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 A B S T R A C T

A Selecting appropriate nuclear energy technology (NET) R&D portfolios is essential for shaping the national 
nuclear energy landscape, supporting global carbon reduction efforts, and advancing the UN Sustainable 
Development Goal for affordable and clean energy. However, research on NET R&D portfolio selection (NET-
R&D-PS) remains limited and fails to adequately address the scenario uncertainty. Thus, this study proposes 
a distributionally robust ordinal priority approach (OPA-DR) for NET-R&D-PS under scenario uncertainty that 
affects the importance of evaluation attributes. Although the alternative rankings under possible scenarios and 
their corresponding nominal distributions would be provided, the high uncertainty of future R&D scenarios 
renders the nominal distributions unreliable. To address this, this study introduces an ambiguity set based on 
Kullback–Leibler (KL) divergence for OPA-DR, with ambiguity set sizes designed for large- and small-sample 
problems, characterizing all possible attribute ranking distributions derived from the nominal distribution. 
This study develops an efficient exact solving algorithm for OPA-DR, requiring only the solution of a one-
dimensional equation and the calculation of the optimal solution in closed form with polynomial time 
complexity, making it suitable for large-scale problems. This study analyzes the OPA-DR sensitivity under 
varying utility functions and constraint perturbations. The effectiveness of OPA-DR is validated by the NET-
R&D-PS for China 2030 Vision Plan, providing insights for scenario analysis, attribute selection, and portfolio 
selection.
1. Introduction

Nuclear power is essential in addressing global energy demands, 
combating climate change, and achieving the United Nations Sustain-
able Development Goal 7 (SDG7, Affordable and Clean Energy) [1]. As 
a clean energy source, nuclear power significantly reduces greenhouse 
gas emissions, helping to mitigate climate change. With its reliable 
and stable power generation capacity, nuclear energy technology (NET) 
ensures a sustainable energy supply, meets affordable demand, supports 
economic growth, and drives social development [2]. Current NET 
R&D process typically includes four stages and twelve steps, posing 
considerable technical challenges [3]. Sovacool et al. [4] analyzed the 
costs of 180 nuclear reactors, of which 64 projects exceeded budgets 
by over $1 billion, with 14 projects surpassing $5 billion in additional 
costs, and 10 projects exceeding 400% cost overruns, resulting in an 
average project cost increase of 117%. This underscores the importance 
of the strategic planning of NET R&D portfolio selection (NET-R&D-PS) 
in the advancement of the nuclear energy sector [5].
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In the decision-making process of NET-R&D-PS, decision-makers 
(DMs) must balance multiple factors such as environmental impact, 
safety design, and economic viability [6,7]. These factors often con-
flict, as enhancing safety may raise costs, while reducing costs may 
harm environmental sustainability. DMs must navigate these trade-
offs, considering long-term goals and broader societal impacts, which 
means effective NET-R&D-PS decision-making requires subjective judg-
ment and careful evaluation of the interdependencies between these 
competing objectives [8]. Moreover, the uncertainty surrounding the 
future of NET R&D is another critical aspect of the planning process. 
Scenario uncertainty is particularly significant in this context, as it 
can substantially influence the decision-making outcomes [9,10]. For 
example, the pace of advancements in other clean energy technologies, 
such as solar, wind, and hydrogen, could reduce the demand for nuclear 
power, while breakthroughs in nuclear fusion or other innovations 
could boost its potential. The prospects for nuclear technology exports 
also play a crucial role, as global demand and favorable international 
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markets could improve economic feasibility. However, market fluctu-
ations and regulatory changes pose risks to profitability. DMs must 
navigate these uncertainties alongside the technical complexities of 
nuclear energy, considering the evolving landscape of clean energy and 
market dynamics [11].

NET-R&D-PS is a critical application of project portfolio selection 
(PPS) problems in the nuclear energy domain, yet it has received 
limited attention in current research. Current quantitative-based PPS 
studies primarily categorize into two types for identifying the optimal 
portfolio [12]. One approach involves evaluating projects using multi-
attribute decision-making (MADM) technique and then selecting the 
best portfolio based on constrained project generation [13–16]. The 
other approach generates feasible portfolios first based on constraints, 
such as project interactions, resource dependencies, and implementa-
tion feasibility, followed by evaluation using MADM to determine the 
optimal portfolio [17–19]. Although some studies address input data 
(e.g., evaluation scores, semantic values or pairwise comparison values) 
uncertainty through grey system theory [20] and fuzzy theory [21], 
they often overlook the impact of scenario uncertainty on the evalua-
tion model, which typically exceeds the uncertainties in specific project 
or portfolio input performance. Another non-negligible source of un-
certainty in this input data is the fact that decision analysts typically 
do not have the level of confidentiality to access detailed NET R&D 
data. Wang et al. [22] suggests that using ranking data for decision-
making can effectively deal with data inaccessibility and uncertainty, 
a perspective not yet explored in current PPS studies. Notably, ordinal 
priority approach (OPA) is a novel MADM method employing linear 
programming [23]. It uses ranking data that reflects expert preferences 
as decision data, offering a potentially powerful foundation for NET-
R&D-PS. By solving a linear programming model, OPA concurrently 
assigns weights to experts, attributes, and alternatives, enabling rank-
ing without requiring data standardization, expert opinion aggregation, 
or predetermined weights [24,25]. However, the original OPA model 
and its current extensions do not account for the scenario uncertainty 
in NET-R&D-PS, which is a key concern for DMs.

To address the above limitations, this study proposes a distribu-
tionally robust OPA (OPA-DR) for NET-R&D-PS under scenario uncer-
tainty based on distributionally robust optimization (DRO) paradigm. 
In NET-R&D-PS, the attribute rankings are associated with the scenarios 
faced by NET-R&D, each with corresponding realization probabilities, 
forming the nominal distribution of attribute rankings. The proposed 
approach employs a Kullback–Leibler (KL) divergence-based ambiguity 
set with the set size designed for both small- and large-sample cases. To 
effectively solve the KL divergence-based OPA-DR for practical usage, 
we develop a solution algorithm with polynomial time complexity, 
suitable for large-scale problems. The main contribution are:

• Methodological contribution: This study introduces a distribution-
ally robust extension of OPA to address scenario uncertainty, pre-
senting a novel formulation in the OPA literature. Based on OPA 
properties, this study identifies the basis for distinguishing small-
scale from large-scale scenarios and introduces an optimization-
based approach for determining ambiguity sets in large-scale 
scenarios, along with a statistics-based approach for small-sample 
cases. Unlike commonly used reformulation techniques for the KL 
divergence-based DRO, this study presents an efficient solving al-
gorithm based on the structural properties of OPA, only requiring 
the solution of a one-dimensional equation and the calculation of 
the optimal solution through a closed-form expression.

• Theoretical contribution: This study presents the closed-form 
solution of OPA-DR, analyzing performance differences among 
OPA-DR, robust OPA, and stochastic OPA based on nominal dis-
tribution. In addition, this study conducts a theoretical sensitivity 
analysis on the optimal weight disparity scalar and weights of 
OPA-DR from various utility functions for ranked alternatives, 
and constraint perturbations. The proven results can be similarly 
applied to the sensitivity analysis of other OPA models.
2 
• Practical contribution: This study presents a decision-making 
method aligned with NET-R&D-PS practices. The method is
demonstrated through the application of the NET-R&D-PS in 
China’s 2030 Vision Plan, offering insights for scenario analysis, 
attribute selection, and final portfolio outcomes in NET-R&D-PS.

The remaining parts of this paper are organized as follows: Section 2 
reviews the related literature. Section 3 gives the preliminaries. Sec-
tion 4 proposes OPA-DR for NET-R&D-PS. Section 5 demonstrates the 
proposed approach using the NET-R&D-PS of China 2030 Vision Plan. 
Section 6 provides conclusions and future research directions.

2. Literature review

NET-R&D-PS refers to the process of determining the portfolio of 
NET R&D projects of the nuclear system (reactors and associated post-
combustion processes) to promote the advancement and application 
of NET [3,26]. NET-R&D-PS is a specialized application of the PPS 
problem within the decision analysis domain. Existing PPS analysis 
methods are primarily qualitative and quantitative [27]. Of these, quan-
titative analysis is particularly valued for its objectivity and accuracy, 
with numerous successful instances highlighting its efficacy. This study 
will concentrate on quantitative-based PPS [28]. Current quantitative 
approaches are generally divided into two categories [12]. The first 
involves evaluating individual projects and then assembling the optimal 
portfolio. The second involves generating all possible portfolios from 
projects and then assessing these to select the best option. The primary 
distinction between these methods is the focus on decision units; the 
first emphasizes individual project assessment, while the second centers 
on portfolio evaluation.

In the first type, MADM technique is initially used to evaluate 
each project comprehensively, followed by transforming the problem 
into a 0–1 knapsack problem to identify the optimal portfolio [12]. 
Specifically, the performance or ranking obtained in the first stage 
is integrated into the additive objective function in the second stage, 
subject to resource constraints. The primary advantage of this type is 
its ability to evaluate individual project performance across multiple 
attributes, thus improving understanding of how each project impacts 
the overall portfolio. Common MADM methods in this context include 
AHP [29], ANP [30], DEMATEL [31], TOPSIS [16], PROMETHEE [32], 
ELECTRE-TRI [33], MABAC [13], and MAUT [34]. Debnath et al. 
[13] proposed a hybrid approach combining DEMATEL and MABAC 
to manage the genetically modified agriculture investment portfolio. 
They used DEMATEL to assign attribute weights and MABAC to in-
tegrate DMs’ preferences, resulting in portfolio ranking. Zhang et al. 
[14] presented a fuzzy VIKOR multi-objective optimization model for 
military weapon portfolio selection. This process involves three stages: 
the first derives attribute weights using fuzzy semantic values, the 
second applies VIKOR to obtain comparative scores over time, and 
the final stage uses a multi-objective optimization model to select 
the optimal portfolio. Wu et al. [15] determined attribute weights 
through the interval type-2 fuzzy analytic hierarchy process and then 
employed the non-dominated sorting genetic algorithm-II to select 
the optimal distributed energy generation portfolio under budget con-
straints. Tavana et al. [17] developed a VIKOR-based mixed integer 
linear programming approach for network security project portfolio se-
lection, considering project synergies, human resource capabilities, and 
employee training opportunities. Additionally, some studies addressed 
decision-making uncertainty by integrating grey system theory [20,35] 
and fuzzy theory [21,32,36] to improve MADM input data.

In the second type, all feasible portfolios are generated by consid-
ering relevant constraints, followed by an evaluation to identify the 
optimal one [12]. The main advantage of this approach is its ability 
to address project interactions and offer deeper insights into portfolio 
differences. In the first stage, feasible or Pareto-optimal portfolios 
are generated using constraint-based methods that consider factors 
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like project interactions, resource dependencies, and implementation 
feasibility, without incorporating expert preferences. The second stage 
involves MADM analysis to rank non-dominated portfolios or select 
the best compromise portfolio. Among MADM methods, DEA is the 
predominant technique for analyzing feasible portfolios in the second 
stage [17,18], with a smaller subset utilizing the SMAA approach [19,
37]. Tavana et al. [17] proposed a fuzzy multidimensional multiple-
choice knapsack model to generate feasible portfolios and apply DEA 
to filter a manageable set of implementable alternatives. Song et al. 
[19] developed four heuristic algorithms based on SMAA for project 
portfolio selection and scheduling in engineering management.

Existing research on PPS has gained attention across various fields, 
but research specifically focused on NET-R&D-PS remains relatively 
scarce. Current studies on PPS still overlook scenario uncertainty in 
decision-making. Most existing research addresses uncertainty in deci-
sion data provided subjectively by experts, using grey system theory 
and fuzzy theory. However, these studies fail to account for future 
scenario uncertainty, a broader and more significant source of un-
certainty in portfolio selection [38]. Scenario uncertainty not only 
complicates long-term performance estimation of projects or portfolios 
but can also fundamentally alter the importance of attributes [34,39]. 
This is particularly critical in strategic decisions such as NET-R&D-PS. 
For example, in scenarios involving future nuclear energy exports, the 
economic attribute becomes more important than security, compared 
to a scenario without exports. This shift in evaluation structure, driven 
by scenario uncertainty, is more impactful than the range of fuzziness 
in expert input data. Additionally, due to the safety classification 
constraints in NET R&D projects, decision analysts often cannot access 
precise evaluation data and must rely on expert opinions. This reliance 
introduces subjectivity and potential biases into the decision-making 
process. However, empirical evidence suggests that using ranking data 
as model inputs results in more robust decision outcomes when han-
dling input data uncertainty [40]. DM only needs to specify ‘‘which 
is better than which’’ without indicating the degree of dominance or 
exact values [22]. Thus, using ranking data for NET-R&D-PS may offer 
a promising approach, though current research has not explored this 
aspect.

3. Preliminary

3.1. Ordinal priority approach

OPA is an effective MADM technique for MADM with incomplete 
information [23]. Unlike conventional methods, OPA uses ordinal rank-
ings, discussed in Section 2, as inputs, allowing for the simultaneous 
calculation of weights for experts, attributes, and alternatives through 
a linear programming model [41]. It eliminates the need for data 
normalization, expert opinion aggregation, and pre-determined deci-
sion weights [42]. Consequently, its straightforward data collection 
process, ease of implementation, and dependable results have led to 
its widespread application in areas such as supplier selection [28,43], 
blockchain obstacle analysis [44], and performance evaluation [25,45]. 
However, OPA and its current extensions do not account for scenario 
uncertainty when attribute rankings are given across different scenarios 
with nominal probability distributions.

Given a set of experts , attributes  , and alternatives , DM 
initially assigns the ranking 𝑡𝑖 for expert 𝑖 ∈ . Subsequently, each 
expert 𝑖 ∈  independently provides the ranking 𝑠𝑖𝑗 for each attribute 
𝑗 ∈   and the ranking 𝑟𝑖𝑗𝑘 for each alternative 𝑘 ∈  under each 
attribute 𝑗 ∈  . Define the following sets:
1 ∶=

{

(𝑖, 𝑗, 𝑘, 𝑙) ∈  ×  × × ∶ 𝑟𝑖𝑗𝑙 = 𝑟𝑖𝑗𝑘 + 1, 𝑟𝑖𝑗𝑘 ∈ [𝐾 − 1]
}

,

2 ∶=
{

(𝑖, 𝑗, 𝑘) ∈  ×  × ∶ 𝑟𝑖𝑗𝑘 = 𝐾
}

,

 ∶= {(𝑖, 𝑗, 𝑘) ∈  ×  ×} .

Based on the ordinal ranking data, OPA identifies the maximum 
weight disparity among alternatives with consecutive rankings, while 
3 
reflecting experts’ preferences within the normalized weight space, as 
shown in Eq.  (1) [23]. 
max
𝒘,𝑧

𝑧

s.t. 𝑧 ≤ 𝑡𝑖𝑠𝑖𝑗𝑟𝑖𝑗𝑘(𝑤𝑖𝑗𝑘 −𝑤𝑖𝑗𝑙) ∀(𝑖, 𝑗, 𝑘, 𝑙) ∈ 1

𝑧 ≤ 𝑡𝑖𝑠𝑖𝑗𝑟𝑖𝑗𝑘(𝑤𝑖𝑗𝑘) ∀(𝑖, 𝑗, 𝑘) ∈ 2

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑤𝑖𝑗𝑘 = 1

𝑤𝑖𝑗𝑘 ≥ 0 ∀(𝑖, 𝑗, 𝑘) ∈ 

(1)

The variable 𝑧 can be regarded the weight disparity scalar of OPA. 
After solving Eq. (1) for 𝑧⋆ and 𝒘⋆, the weights of experts, attributes, 
and alternatives, denoted as 𝑊  , 𝑊  , and 𝑊 , are then given by: 

𝑊 
𝑖 =

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑤⋆

𝑖𝑗𝑘, ∀𝑖 ∈ ,

𝑊 
𝑗 =

𝐼
∑

𝑖=1

𝐾
∑

𝑘=1
𝑤⋆

𝑖𝑗𝑘, ∀𝑗 ∈  ,

𝑊 
𝑘 =

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1
𝑤⋆

𝑖𝑗𝑘, ∀𝑘 ∈ .

(2)

Without loss of generality, map the alternative index 𝑘 to the 
ranking index 𝑟 corresponding to their ranking position 𝑟𝑖𝑗𝑘 with 𝑅 =
𝐾, and define  ∶=  ×  × . Wang [24] provides the equivalent 
reformulation of the OPA model in Eq.  (1), which can be interpreted 
as deriving weights based on rank order centroid (ROC) weights for 
alternatives (i.e., a specific utility function for ranked alternatives) 
within a normalized decision space.

Lemma 1 (Wang [24]). The OPA model in Eq.  (1) has the following 
equivalent reformulation: 
max
𝒘,𝑧

𝑧,

s.t. 𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧 ≤ 𝑡𝑖𝑠𝑖𝑗𝑤𝑖𝑗𝑟, ∀(𝑖, 𝑗, 𝑟) ∈  ,

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝑤𝑖𝑗𝑟 = 1,

𝑤𝑖𝑗𝑟 ≥ 0, ∀(𝑖, 𝑗, 𝑟) ∈  ,

(3)

where 𝑢𝑅𝑂𝐶
𝑟 = 1

𝑅

(

∑𝑅
ℎ=𝑟

1
ℎ

)

 for any 𝑟 ∈ . 
The dual problem of Eq.  (3) is shown in Eq.  (4). 

min
𝜆,𝜸

𝜆

s.t. 𝑡𝑖𝑠𝑖𝑗𝛾𝑖𝑗𝑟 ≤ 𝜆 ∀(𝑖, 𝑗, 𝑟) ∈ 
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝑅𝑢𝑅𝑂𝐶

𝑟 𝛾𝑖𝑗𝑟 = 1

𝛾𝑖𝑗𝑟 ≥ 0 ∀(𝑖, 𝑗, 𝑟) ∈ 

(4)

For clarity in subsequent discussions, rewrite the OPA model in
Eq.  (3) as: 
max
𝑧,𝒘∈

{𝑧 ∶ 𝒇 (𝑧) ≤ 𝒈(𝒘)} . (5)

where [𝒇 (𝑧)]𝑖𝑗𝑟 = 𝑓𝑖𝑗𝑟(𝑧) = 𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧 and [𝒈(𝒘)]𝑖𝑗𝑟 = 𝑔𝑖𝑗𝑟(𝑤𝑖𝑗𝑟) = 𝑡𝑖𝑠𝑖𝑗𝑤𝑖𝑗𝑟

for all (𝑖, 𝑗, 𝑟) ∈  and

 ∶=

{

𝑤𝑖𝑗𝑘 ∈ R𝐼×𝐽×𝐾
+ ∶

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝑤𝑖𝑗𝑟 = 1, 𝑤𝑖𝑗𝑟 ≥ 0,∀(𝑖, 𝑗, 𝑟) ∈ 

}

.

3.2. Problem statement

This study considers NET-R&D-PS where DM needs to choose the 
optimal portfolio from a set of optional NET R&D portfolios  ∶=
{1, 2,… ,𝐻}, indexed by ℎ. Each portfolio consists of 𝑏 projects chosen 
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from a set of projects  ∶= {1, 2,… , 𝐾}, indexed by 𝑘. If portfolio ℎ
contains project 𝑘, then 𝑥ℎ𝑘 = 1; otherwise, 𝑥ℎ𝑘 = 0. Additionally, a 
set of attributes  ∶= {1, 2,… , 𝐽}, indexed by 𝑗, and a set of experts 
 ∶= {1, 2,… , 𝐼}, indexed by 𝑖, are assigned to evaluate the projects. 
For input data, DM initially provides an importance ranking for each 
expert 𝑖 ∈ , denoted as 𝑡𝑖 ∈ . Then, each expert 𝑖 ∈  ranks 
each project 𝑘 ∈  across each attribute 𝑗 ∈  , yielding ranks 
𝑟𝑖𝑗𝑘 ∈  ∶= {1, 2,… , 𝑅 = 𝐾}. The attribute rankings are influenced by 
potential future scenarios that NET R&D may encounter. Let 𝒔̃ denotes 
the uncertain attribute rankings. DM provides a finite set of scenarios 
 ∶= {1, 2,… , 𝐿}, indexed by 𝑙, with corresponding attribute rankings 
𝑠𝑗𝑙 ∈   for each 𝑗 ∈   and 𝑙 ∈ , associated with nominal probabilities 
𝒑𝑙 = P̂[𝒔̃ = 𝒔𝑙]. Notably, due to the highly specialized nature of the NET 
R&D portfolio, the number of feasible portfolios is generally small (less 
than 20) and is predetermined by experts.

4. Distributionally robust ordinal priority approach

The nominal distribution of scenario faced by NET R&D occurrences 
is difficult to determine objectively and is typically estimated subjec-
tively using expert judgment, leading to considerable uncertainty [12]. 
This motivates to adopt the DRO modeling paradigm to extend OPA 
(namely, distributionally robust OPA, OPA-DR) for addressing NET-
R&D-PS. Specifically, OPA-DR incorporates an ambiguity set, i.e., a 
family of probability distributions with limited yet common distribu-
tional information derived from the nominal distribution, and evaluates 
the decision outcome based on its worst-case expected performance 
across any distribution within the ambiguity set. Let ℱ (P̂, 𝜃) denote 
the ambiguity set derived from the nominal distribution P̂ with the 
ambiguity set size 𝜃. The unified framework for OPA-DR is given by: 
max
𝑧,𝒘∈

{

𝑧 ∶ 𝒇 (𝑧) ≤ E𝑠̃𝑗∼P𝑗 [𝒈(𝒘, 𝑠̃𝑗 )],∀P𝑗 ∈ ℱ (P̂, 𝜃),∀𝑗 ∈ 
}

. (6)

Notably, Eq. (6) is an infinite-dimensional optimization problem, 
since its ambiguity set contains infinitely possible realizations of proba-
bility distribution. Thus, for OPA-DR, the key to our success is designing 
the ambiguity set based on the nominal distribution for the NET R&D 
scenario and further determining the effective algorithm for solving Eq. 
(6).

4.1. Ambiguity set construction

Building upon the nominal distribution for the NET R&D scenario, 
we adopt a distance-based formulation to quantify distributional am-
biguity. Specifically, we employ the KL divergence to measure the 
proximity between probability distributions. The underlying assump-
tion is that the worst-case distribution is absolutely continuous with 
respect to the nominal one, sharing the same finite support set [46]. 
This setup provides the foundation for developing solving algorithms 
and identifying the worst-case distribution, offering insights into man-
agerial decision-making. To begin with, we introduce the definition of 
the KL divergence.

Definition 1.  The KL divergence of P with respect to P̂ in discrete 
distribution with 𝐿 scenarios is given by: 

𝐷𝐾𝐿(P, P̂) =
𝐿
∑

𝑙=1
𝑝𝑙𝜙𝐾𝐿

(

𝑝𝑙
𝑝̂𝑙

)

, (7)

where 𝜙𝐾𝐿(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1 and 𝑡 > 0.

It is easy to verify that 𝜙𝐾𝐿(𝑡) is a convex function on 𝑡 > 0, with 
the conjugate function 𝜙∗

𝐾𝐿(𝑠) = 𝑒𝑠 − 1. The KL divergence satisfies 
𝐷𝐾𝐿(P, P̂) ≥ 0, with equality holding if and only if P = P̂. However, it 
is important to note that the KL divergence is asymmetric and does not 
satisfy the triangle inequality. To avoid pathological cases, following 
standard assumptions in [46], we assume that:

𝜙 (0) < ∞, 0 ⋅ 𝜙
( 0) = 0, 0 ⋅ 𝜙

( 𝑡 ) = lim 𝜀 ⋅ 𝜙
( 𝑡 )
𝐾𝐿 𝐾𝐿 0 𝐾𝐿 0 𝜀→0 𝐾𝐿 𝜀

4 
= 𝑡 lim
𝑠→∞

𝜙𝐾𝐿(𝑠)
𝑠

, 𝑡 > 0.

We now consider how to determine the ambiguity set size 𝜃 in the 
KL divergence-based OPA-DR problem. Inspired by Blanchet et al. [47], 
we choose the ambiguity set as the minimum KL ball containing at 
least one distribution that yields the same optimal solution as the true 
problem. Specifically, let (𝑧⋆,𝒘⋆) denote the optimal solution under the 
true distribution P⋆. The set of distributions preserving this optimality 
is then defined as: 

(𝑧⋆,𝒘⋆) ∶=
{

P ∶ (𝑧⋆,𝒘⋆) ∈ arg min
𝑧,𝒘∈

{

𝑧 ∶ 𝑓 (𝑧) ≤ E𝒔̃∼P[𝑔(𝒘, 𝒔̃)]
}

}

.

(8)

Since P⋆ ∈ (𝑧⋆,𝒘⋆) by construction, we can determine the 
ambiguity set size 𝜃 by minimizing the KL divergence from (𝑧⋆,𝒘⋆)
to P̂: 
𝜃 = min

P∈(𝑧⋆ ,𝒘⋆)
𝐷𝐾𝐿(P, P̂). (9)

However, since the true optimal solution (𝑧⋆,𝒘⋆) is not accessi-
ble, we replace it with the empirical optimal solution (𝑧⋆𝑁 ,𝒘⋆

𝑁 ) when 
the amount of sample is sufficient, which is obtained by solving the 
following problem: 
min

𝑧,𝒘∈

{

𝑧 ∶ 𝑓 (𝑧) ≤ E𝒔̃∼P𝑁 [𝑔(𝒘, 𝒔̃)]
}

, (10)

where P𝑁  represents the empirical distribution. Under mild conditions, 
replacing (𝑧⋆,𝒘⋆) with (𝑧⋆𝑁 ,𝒘⋆

𝑁 ) provides a good approximation [48].

Remark 1.  From Eq. (8), we notice that the determination of scenario 
scale actually correlates with the number of attributes. Specifically, 
when 𝐿 ≤ 𝐽 , the KL divergence-based OPA-DR problem in Eq.  (6) can 
be considered a small scale problem. This follows from the fact that Eq. 
(8) is equivalent to find a probability distribution set that satisfies the 
KKT conditions leading to (𝑧⋆,𝒘⋆). Following the KKT condition of 
OPA provided by Wang [24], we have: 

(𝑧⋆,𝒘⋆) ⇔  ∶=

{

P ∶
𝐿
∑

𝑙=1
𝑝𝑙𝑠𝑗𝑙 = E𝑠̃𝑗∼P𝑁 [𝑠̃𝑗 ],∀𝑗 ∈ 

}

, (11)

where the left-hand side represents the constant sample average of 
each attribute ranking. Thus, when 𝐿 ≤ 𝐽 , the feasible distribution set 
reduces to a singleton. In such small-scale problems, expert judgments 
of scenario probabilities are assumed to be reliable and capable of 
handling the limited scope, which implies that the statistics-based 
approach can determine the ambiguity set size 𝜃.

Note that a commonly used class of test statistics is defined by 𝜙𝐾𝐿:

𝑇 𝐿
𝜙𝐾𝐿

(P̂,P) = 2𝐿
𝜙′′
𝐾𝐿(1)

𝐷𝜙𝐾𝐿
(P̂,P), (12)

where P̂ is the nominal distribution with 𝐿 finite samples.
The following proposition provides the ambiguity set size for the 

small-sample case constructed by the sample size 𝐿 and the significance 
level 𝜌.

Proposition 1.  Given the nominal distribution with 𝐿 scenarios, signifi-
cance level 𝜌, and attribute number 𝐽 , when 𝐿 ≤ 𝐽 , the ambiguity set size 
𝜃 of the KL divergence-based OPA-DR problem in Eq.  (6) is given by: 

𝜃 =
𝜙′′
𝐾𝐿(1)𝜌
2𝐿

. (13)

The following algorithm gives the procedure to determine the am-
biguity set size 𝜃 for the KL divergence-based OPA-DR problem in Eq. 
(6), which considers small-sample and normal cases.

Based on the above discussion, we obtain the KL divergence ambi-
guity set for the OPA-DR problem in Eq.  (6): 

ℱ𝐾𝐿(P̂, 𝜃) ∶=

{

P ∈ 𝛯 ∶ 𝐷𝐾𝐿(P, P̂) ≤ 𝜃,
𝐿
∑

𝑙=1
𝑝𝑙 = 1, 𝑝𝑙 ≥ 0,∀𝑙 ∈ 

}

. (14)
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Algorithm 1 Specifing the ambiguity set size 𝜃
1: Input: Nominal distribution P̂ with 𝐿 scenario, attribute number 𝐽 , 
and significance level 𝜌. 

2: Output: Ambiguity set size 𝜃. 
3: Initialization: 𝜃 ← 0 and  ∶= ∅. 
4: if 𝐿 ≤ 𝐽 then 
5: Calculate through statistics-based approach 𝜃 ←

𝜙′′
𝐾𝐿(1)𝜌
2𝐿

.
6: else 
7: Let  ∶=

{

P ∶
∑𝐿

𝑙=1 𝑝𝑙𝑠𝑗𝑙 = E𝑠̃𝑗∼P𝑁 [𝑠̃𝑗 ],∀𝑗 ∈ 
}

. 
8: Calculate through optimization-based approach 𝜃 ←

min
P∈

𝐷𝐾𝐿(P, P̂).
9: end if
10: return 𝜃.

4.2. Algorithm design and closed-form analysis

In this section, we design an effective algorithm for solving the KL 
divergence-based OPA-DR problem based on its structural properties. 
To begin with, we transform Eq. (6) into the following equivalent form:
max
𝑧,𝒘

𝑧,

s.t. 𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧 ≤ min

P𝑗∈ℱ𝐾𝐿(P̂,𝜃)
E𝑠̃𝑗∼P𝑗 [𝑡𝑖𝑠̃𝑗𝑤𝑖𝑗𝑟], ∀(𝑖, 𝑗, 𝑟) ∈  ,

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝑤𝑖𝑗𝑟 = 1,

𝑤𝑖𝑗𝑟 ≥ 0, ∀(𝑖, 𝑗, 𝑟) ∈  .

(15)

The following lemma presents the worst-case distribution for the KL 
divergence-based OPA-DR problem in Eq.  (15).

Lemma 2.  For each 𝑗 ∈  , the worst-case distribution P⋆
𝑗  of the KL 

divergence-based OPA-DR problem in Eq.  (15) takes the following form: 

𝑝⋆𝑗𝑙 =
𝑝̂𝑙 exp

(

𝑠𝑗𝑙
𝛼⋆𝑗

)

∑𝐿
𝑙=1 𝑝̂𝑙 exp

(

𝑠𝑗𝑙
𝛼⋆𝑗

) , ∀𝑙 ∈ , (16)

where 𝛼⋆𝑗 > 0 is the unique solution to the following KL divergence 
constraint: 

𝐿
∑

𝑙=1

𝑝̂𝑙 exp
(

𝑠𝑗𝑙
𝛼𝑗

)

∑𝐿
𝑙=1 𝑝̂𝑙 exp

(

𝑠𝑗𝑙
𝛼𝑗

) log

⎛

⎜

⎜

⎜

⎜

⎝

exp
(

𝑠𝑗𝑙
𝛼𝑗

)

∑𝐿
𝑙′=1 𝑝̂𝑙 exp

(

𝑠𝑗𝑙
𝛼𝑗

)

⎞

⎟

⎟

⎟

⎟

⎠

= 𝜃. (17)

Eq. (17) can be efficiently computed by one-dimensional search 
methods, such as bisection. The following theorem provides the closed-
form solution of the KL divergence-based OPA-DR problem in Eq.  (15) 
given the worst-case distribution.

Theorem 1.  Given the worst-case distributions P⋆
𝑗  for all 𝑗 ∈  , the closed-

form solution of the KL divergence-based OPA-DR problem in Eq.  (15) is 
given by: 

𝑧⋆ =
⎛

⎜

⎜

⎝

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1

𝑅𝑢ROC𝑟

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

⎞

⎟

⎟

⎠

−1

, (18)

and 

𝑤⋆
𝑖𝑗𝑟 =

𝑅𝑢ROC𝑟 𝑧⋆

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

, ∀(𝑖, 𝑗, 𝑟) ∈  . (19)

Following the similar proof of Theorem  1, it can be verified that 
the optimal weight disparity scalar for OPA-DR is smaller than that 
of the stochastic OPA based on nominal distribution and larger than 
5 
that of the robust OPA proposed by [28,42]. Thus, it indicates that, 
in the uncertain extension of OPA, robustness against parameter un-
certainty leads to a tendency for balance, reflecting the DMs’ aversion 
to ambiguity rather than a focus on performance quality. By Lemma  2 
and Theorem  1, the KL divergence-based OPA-DR problem in Eq.  (15) 
can be efficiently solved using the algorithm outlined below, without 
relying on the reformulations commonly used to convert the problem 
into a convex optimization, which becomes a burden as the problem 
size grows. After applying Algorithm 2, the optimal weights 𝑤⋆

𝑖𝑗𝑟 are 
mapped to 𝑤⋆

𝑖𝑗𝑘 based on project rankings. Finally, Eq. (2) is used 
to compute the weights for experts, attributes, and projects. Portfolio 
weights are aggregated according to project affiliation.

Algorithm 2 Solving the KL divergence-based OPA-DR problem
1: Input: Nominal distribution P̂ with 𝐿 scenario, ambiguity set size 

𝜃, expert ranking 𝑡𝑖 for all 𝑖 ∈ , attribute ranking 𝑠𝑗𝑙 for all 𝑗 ∈ 
and 𝑙 ∈ , and project number 𝑅. 

2: Output: Optimal weight 𝒘⋆ and optimal weight disparity scalar 𝑧⋆. 

3: Initialization: 𝑧⋆ ← 0, 𝒘⋆ ← 𝟎, 𝛼⋆𝑗 ← 0, and 𝑝⋆𝑗𝑙 ←
1
|𝐿|  for all 𝑗 ∈ 

and 𝑙 ∈ . 
4: for 𝑗 ∈   do 
5: Solving the following equation through bisection method

𝛼⋆𝑗 ← arg
𝛼𝑗

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿
∑

𝑙=1

𝑝̂𝑙 exp
(

𝑠𝑗𝑙
𝛼𝑗

)

∑𝐿
𝑙=1 𝑝̂𝑙 exp

(

𝑠𝑗𝑙
𝛼𝑗

) log

⎛

⎜

⎜

⎜

⎜

⎝

exp
(

𝑠𝑗𝑙
𝛼𝑗

)

∑𝐿
𝑙=1 𝑝̂𝑙 exp

(

𝑠𝑗𝑙
𝛼𝑗

)

⎞

⎟

⎟

⎟

⎟

⎠

= 𝜃

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

6: for 𝑙 ∈  do 

7: Calculate the worst-case probability 𝑝⋆𝑗𝑙 ←
𝑝̂𝑙 exp

(

𝑠𝑗𝑙
𝛼⋆𝑗

)

∑𝐿
𝑙′=1 𝑝̂𝑙′ exp

(

𝑠𝑗𝑙′
𝛼⋆𝑗

) .

8: end for
9: end for
10: Calculate the optimal weight disparity scalar 𝑧⋆ ←

⎛

⎜

⎜

⎝

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1

𝑅𝑢ROC𝑟

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

⎞

⎟

⎟

⎠

−1

. 

11: for (𝑖, 𝑗, 𝑟) ∈  do 
12: Calculate the optimal weight 𝑤⋆

𝑖𝑗𝑟 ←
𝑅𝑢ROC𝑟 𝑧⋆

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

.

13: end for
14: return 𝒘⋆ and 𝑧⋆.

4.3. Theoretical sensitivity analysis

The sensitivity analysis of OPA-DR mainly consists of two parts: util-
ity function analysis and constraint perturbation analysis. Notably, the 
latter mainly focuses on the presence of noise in the weight disparities 
of the alternatives with consecutive rankings.

We begin with the utility function sensitivity analysis by deriving 
the closed-form solution of the OPA-DR problem under the worst-
case distributions. Consider the following utility function sensitivity 
problem: 
max
𝑧,𝒘∈

𝑧,

s.t. 𝑅𝑢𝛿𝑟𝑧 ≤ 𝑡𝑖

( 𝐿
∑

𝑙=1
𝑝⋆𝑗𝑙𝑠𝑗𝑙

)

𝑤𝑖𝑗𝑟, ∀(𝑖, 𝑗, 𝑟) ∈  ,
(20)

where the utility function 𝒖𝛿 for ranked alternatives satisfying mono-
tonicity condition 𝑢𝛿𝑟 > 𝑢𝛿𝑟+1 for all 𝑟 = 1,… , 𝑅 − 1; and normalization 
condition ∑𝑅 𝑢𝛿 = 1.
𝑟=1 𝑟
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Let 𝑧⋆(𝛿) and 𝒘⋆(𝛿) denote the optimal solution of Eq.  (20). The 
following corollary gives the utility function sensitivity analysis results.

Corollary 1.  For the utility function sensitivity problem in Eq.  (20), we 
have: 
𝑧⋆(𝒖𝛿) = 𝑧⋆, (21)

and 
|𝑤⋆

𝑖𝑗𝑟 −𝑤⋆
𝑖𝑗𝑟(𝒖

𝛿)| = 𝑅𝑧⋆

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

|

|

|

𝑢𝑅𝑂𝐶
𝑟 − 𝑢𝛿𝑟

|

|

|

, ∀(𝑖, 𝑗, 𝑟) ∈  . (22)

Corollary  1 indicates that the optimal weight disparity scalar re-
mains constant for any utility function with monotonicity and normal-
ization properties. Also, the difference in optimal weights is determined 
by the difference in utility functions.

Consider the following constraint perturbation sensitivity problem:
max
𝑧,𝒘

𝑧,

s.t. 𝑡𝑖

( 𝐿
∑

𝑙=1
𝑝⋆𝑗𝑙𝑠𝑗𝑙

)

𝑤𝑖𝑗𝑟 − 𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧 ≥ 𝜀𝑖𝑗𝑟, ∀(𝑖, 𝑗, 𝑟) ∈  ,

1 −
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝑤𝑖𝑗𝑟 = 𝜖,

𝑤𝑖𝑗𝑟 ≥ 0, ∀(𝑖, 𝑗, 𝑟) ∈  .

(23)

The perturbed parameters can be positive or negative, thus the 
perturbation problem results from the original problem by tightening 
or relaxing each inequality weight disparity constraints by 𝜀𝑖𝑗𝑟, and 
changing the righthand side of the equality normalization constraint by 
𝜖. Let 𝑧⋆(𝜺, 𝜖) and 𝒘⋆(𝜺, 𝜖) denote the optimal solution of Eq.  (23). The 
following corollary gives the constraint perturbation sensitivity analysis 
results.

Corollary 2.  For the constraint perturbation problem in
Eq.  (23), we have: 

𝑧⋆(𝜺, 𝜖) =
⎛

⎜

⎜

⎝

1 − 𝜖 −
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1

𝜀𝑖𝑗𝑟
𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

⎞

⎟

⎟

⎠

𝑧⋆, (24)

and 

𝑤⋆
𝑖𝑗𝑟(𝜺, 𝜖) =

𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧⋆(𝜺, 𝜖)

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

, ∀(𝑖, 𝑗, 𝑟) ∈  . (25)

Corollary  2 shows that when reducing the normalization scale 
(equality constraint) or tightening the weight disparity constraints 
(inequality constraints), a smaller optimal weight disparity scalar is 
obtained.

4.4. Implementation steps

In this section, we outlines the implementation steps, notes, and 
algorithmic time complexity of the KL divergence-based OPA-DR model 
for NET-R&D-PS. The following procedure details the implementation 
steps.

When applying the proposed model for NET-R&D-PS, it is important 
to note that, after defining the decision elements, project rankings are 
assigned independently by each expert, without group discussion, re-
flecting individual preferences. Attribute rankings for each scenario and 
their associated probabilities are determined through group judgment 
to ensure reliability. Expert rankings are provided by DM based on fac-
tors such as educational background, job grade, and work experience. 
For large-scale scenarios, we recommend first clustering or reducing 
the scenarios, followed by expert group discussions to determine occur-
rence probabilities. This is because, when faced with complex decision 
analyses, increasing information load can scatter experts’ cognitive 
resources (such as attention and memory), leading to imprecise judg-
ments or biases and resulting in systematic deviations. Additionally, the 
6 
proposed model allows for tied rankings, where the weight difference 
between tied alternatives is zero. In individual decision-making, the 
proposed model can be formulated without parameters and constraints 
related to multiple experts.

The time complexity analysis of the proposed model focuses on a 
comprehensive evaluation of Algorithms 1 and 2. Specifically, for small-
scale problems (i.e., when 𝐿 ≤ 𝐽 ), the time complexity of Algorithms 
1 is 𝑂(1); as the problem size increases, its time complexity becomes 
𝑂(𝐿𝐽 + 𝐽 3). For Algorithm 2, its time complexity is 𝑂(𝐼𝐽𝑅 + 𝐽𝐿). 
Therefore, the overall time complexity of the proposed model exhibits a 
piecewise characteristic: for small-scale problems, the overall complex-
ity is 𝑂(𝐼𝐽𝑅 + 𝐽𝐿); for large-scale problems, the overall complexity is 
𝑂(max(𝐽 3, 𝐼𝐽𝑅, 𝐽𝐿)). In general, the time complexity of the proposed 
model is polynomial, effectively avoiding the intractability risks asso-
ciated with exponential or factorial complexities. This characteristic 
makes it suitable for solving most practical engineering problems, 
maintaining good applicability even in larger-scale scenarios.

Procedure 1 Implementation steps of the KL divergence-based OPA-DR 
model for NET-R&D-PS
1: Step 1: Identify decision elements. 
2: Determine the expert set , project set , and portfolio set 
involved in the NET-R&D-PS decision-making process. 

3: Identify the attribute set   according to the NET-R&D-PS 
objectives. 

4: Identify the scenario set  that NET R&D would face. 
5: Step 2: Obtain the input data. 
6: Assign important ranking 𝑡𝑖 for each expert 𝑖 ∈ . 
7: Determine the nominal distribution P̂ for the NET R&D scenario. 
8: for all scenario 𝑙 ∈  do 
9: Assign important ranking 𝑠𝑗𝑙 for each attribute 𝑗 ∈  .
10: end for
11: for all expert 𝑘 ∈  do 
12: Assign important ranking 𝑟𝑖𝑗𝑘 for each alternative 𝑘 ∈  under 

each attribute 𝑗 ∈  .
13: end for
14: Step 3: Calculate the decision weights. 
15: Determine the ambiguity set size based on Algorithm 1. 
16: Solve the worst-case distribution and optimal weights based on 

Algorithm 2. 
17: Calculate the decision weights for experts, attributes, projects, and 

portfolios. 
18: Step 4: Result analysis and validation. 
19: Determine the NET-R&D-PS decision based on the decision weights 

and sensitivity analysis.

5. Illustrative demonstration for China 2030 vision plan

5.1. Case description and scenario setting

This study selects NET-R&D-PS of China’s 2030 Vision Plan as a 
case study. It focuses on nuclear fission technology, including related 
reactors and fuel reprocessing processes. Reactors are classified as 
burner, breeder, or burner-breeder based on their breeding ratio. Fuel 
reprocessing techniques include once-through, separation and purifi-
cation, and partial removal of fission products. This study identifies 
18 pioneering NET R&D projects, covering five nuclear system types 
and nine practical applications, as detailed in Table  2. The compo-
sition of the alternative portfolio, comprising five optional projects, 
is presented in Table  1. K1–K4 are classified as small modular and 
compact reactors, typically designed for propulsion, space power, and 
isotope production. Project K5 is identified as a combustion reactor 
with separation–purification, reflecting its reliance on fuel burning 
coupled with reprocessing. K6–K7 belong to high-temperature gas-
cooled reactors, which are well suited for hydrogen production and 
process heat applications. K8–K11 correspond to fast breeder reactors, 
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Table 1
Alternative portfolio and project composition.
 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 
 K1 – – – ✓ ✓ ✓ ✓ – – – – –  
 K2 – – – – – ✓ – ✓ – – – –  
 K3 – – – ✓ – – – – ✓ – – ✓  
 K4 ✓ ✓ ✓ – ✓ – – – – ✓ ✓ –  
 K5 – – – – – – ✓ ✓ – – – –  
 K6 – – – – – – – – – – ✓ –  
 K7 – – – – – – – – ✓ – – ✓  
 K8 – – – – – – – – – ✓ – –  
 K9 ✓ ✓ – ✓ ✓ – ✓ – – – – –  
 K10 – – ✓ – – ✓ – – – ✓ ✓ –  
 K11 – – – – – – ✓ ✓ – – – –  
 K12 – – – – – – – ✓ – ✓ – –  
 K13 – ✓ – – – – ✓ – – – – –  
 K14 – – – – – – – ✓ – ✓ – –  
 K15 ✓ ✓ – ✓ ✓ ✓ – – ✓ – – –  
 K16 ✓ – ✓ – – – – – ✓ – ✓ ✓  
 K17 ✓ ✓ ✓ ✓ ✓ – – – ✓ – ✓ ✓  
 K18 – – ✓ – – ✓ – – – – – ✓  
Table 2
NET R&D project and practical application.
 Project type Project

ID
NET application

 Electricity
generation

Hydrogen
production

Process
heat

Marine
propulsion

Integrated
island 
utilization

Integrated
remote inland 
utilization

Spacecraft
power

Isotope
production

Military
materiel 
production

 

 
Combustion &
single pass

K1 ✓ – – – ✓ ✓ – ✓ –  
 K2 – – – ✓ – – ✓ – –  
 K3 – – – ✓ ✓ ✓ ✓ – –  
 K4 – – – ✓ – – ✓ ✓ –  
 Combustion &
separation–purification

K5 ✓ – – – ✓ – – – –  
 K6 – ✓ ✓ – – – – – –  
 K7 – ✓ ✓ – – – – – –  
 
Breeding &
separation–purification

K8 – – – – – – – – ✓  
 K9 – – – – – – – – ✓  
 K10 – – – – – – – – ✓  
 K11 ✓ – – – – – – – –  
 Combustion–breeding &
single pass

K12 – ✓ ✓ – – – – – –  
 K13 ✓ – – – ✓ ✓ – – –  
 Combustion–breeding &
separation–purification

K14 ✓ – ✓ – – – – – –  
 K15 ✓ ✓ ✓ – – – – – –  
 Combustion–breeding &
partial neutron 
poison removal

K16 ✓ ✓ ✓ – ✓ ✓ – – –  
 K17 ✓ ✓ ✓ – ✓ ✓ – – –  
 K18 ✓ ✓ ✓ – ✓ ✓ – – –  
characterized by their breeding capability and utilization in both power 
generation and fissile material production. K12–K15 represent hybrid 
combustion–breeding reactors, which integrate the features of both 
combustion and breeding to support multiple energy outputs. Finally, 
K16–K18 are classified as advanced molten salt reactors, featuring 
online fuel circulation and partial neutron poison removal.

This study evaluates potential NET R&D scenarios for 2030 based 
on two key factors: the potential for exportability of NET and the po-
tential for disruptive breakthroughs in other clean energy technologies 
(OCET). Given China’s global nuclear strategy, outlined by the National 
Energy Administration in 2013 and later adopted as a national policy, 
China is actively promoting NET in international markets [3,49]. Be-
yond NET, OCET may serve as substitutes, making it vital to evaluate 
their potential for disruptive breakthroughs when developing NET R&D 
strategies. The following are the four identified scenarios.

• Scenario 1 (S1): No export of NET, with no breakthroughs in 
OCET. Domestic NET R&D should prioritize addressing national 
energy demands and achieving substantial sustainability improve-
ments. Given its relative maturity and contribution to meeting 
non-proliferation objectives, NET will emerge as a more reliable 
option compared to OCET, considering their intermittency and 
economic limitations. Thus, sustainability becomes crucial in NET 
R&D.
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• Scenario 2 (S2): No export of NET, with breakthroughs in OCET. 
In this case, China must reassess its NET R&D path. With the 
rise of OCET, NET must increasingly focus on cost-effectiveness to 
remain competitive in the energy market. This requires reducing 
costs, enhancing R&D efficiency, and continuously optimizing 
operational and maintenance models.

• Scenario 3 (S3): Export of NET, with no breakthroughs in OCET. 
The export of China’s NET has gained significant attention but 
raises concerns about nuclear proliferation. Therefore, China must 
ensure that NET exports do not contribute to misuse or abuse, 
taking sufficient measures to prevent proliferation. Additionally, 
without breakthroughs in OCET, issues of intermittency and eco-
nomic viability remain. Given the high costs associated with nu-
clear projects, collaboration with international partners on cost-
effective NET is essential to ensure long-term stability and mutual 
economic and environmental benefits.

• Scenario 4 (S4): Export of NET, with breakthroughs in OCET. In 
this context, NET faces competitive pressures from OCET, making 
economic efficiency a priority in China’s NET R&D. Cost reduction 
and efficiency improvements are key to maintaining competitive-
ness in the clean energy market. While economic efficiency will 
be a primary focus, safety and sustainability will remain critical, 
although they may become secondary considerations in the face 
of economic competition.
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5.2. Assessment attribute

This study selects six attributes for project evaluation in NET-R&D-
PS, primarily based on GIF R&D Outlook for Generation IV Nuclear 
Energy Systems [50]. These attributes include sustainability, economic 
viability, safety, proliferation resistance, technological compatibility, 
and feasibility of implementation.

Sustainability (A1) refers to the long-term development of the NET 
industry through improved nuclear fuel efficiency, advanced reactor 
and fuel cycle technologies, and better waste management and disposal 
methods [51]. Considering sustainability in the NET R&D portfolio 
helps reduce dependency on uranium resources, minimize environmen-
tal impacts during nuclear energy production, and decrease radioactive 
waste volume and toxicity, thereby extending the environmental im-
pact timeline. In the questionnaire for expert evaluation, the scope of 
this attribute is defined to include: the extent to which an alternative 
contributes to higher fuel utilization and reduced resource consump-
tion; the technological maturity and feasibility of advanced reactor 
or fuel cycle deployment; and the effectiveness of radioactive waste 
treatment, storage, and final disposal.

Economic viability (A2) focuses on reducing the lifecycle costs of 
NET systems through technological innovation and management opti-
mization, addressing challenges such as high initial investments, long 
construction periods, and substantial policy and market risks during 
implementation [52]. Improvements in uranium utilization, modular 
reactor designs, fixed-price contracts, and international cooperation 
enhance NET competitiveness and adaptability. For expert evaluation, 
this attribute is framed in terms of: the ability of an alternative to re-
duce both capital and operational expenditures; its potential to shorten 
construction schedules and improve project delivery efficiency; and its 
competitiveness relative to other available energy technologies.

Safety (A3) ensures the secure and reliable operation of nuclear 
power plants, enhanced through technological innovation and design 
improvements [52]. It focuses on three main areas: reliable reactivity 
control, effective residual heat removal, and robust containment, form-
ing a comprehensive safety framework. Safety is a critical evaluation 
criterion for NET R&D portfolios due to its direct impact on operational 
safety, public health, and environmental protection. The evaluation 
scope for this attribute covers: the capability of an alternative to 
maintain stable and controllable reactor operations under normal and 
abnormal conditions; the adequacy and resilience of heat removal 
mechanisms to prevent core damage; the integrity and reliability of 
containment systems against internal failures or external hazards; and 
the overall effectiveness of safety design features in mitigating accident 
risks.

Proliferation resistance (A4) ensures that NET and materials are 
used exclusively for peaceful purposes, preventing their misuse in 
nuclear weapons production or other non-peaceful activities [53]. This 
involves implementing design, operational, and management innova-
tions to reduce the risk of illegal transfer or theft of nuclear materials 
while ensuring the safe, reliable, and effective use of NET. Proliferation 
resistance is an essential evaluation criterion for NET R&D portfolio 
selection due to NET’s dual potential for both economic and social 
development, as well as the risk of misuse that could jeopardize human 
security. In the questionnaire, this attribute is assessed in terms of: the 
effectiveness of material accounting and control measures to prevent 
unauthorized access; the robustness of physical protection and moni-
toring systems against diversion or theft; the extent to which fuel cycle 
design minimizes the attractiveness of materials for weaponization; and 
the adequacy of institutional and regulatory frameworks that reinforce 
non-proliferation objectives.

Technical compatibility (A5) highlights the importance of shared 
technological features and processes across various NET R&D projects
[52]. This is achieved by evaluating similarities in key areas such as 
reactor technology, materials, and reprocessing processes. High tech-
nical compatibility facilitates technology transfer, supports sustained 
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platform development and upgrading, and lowers barriers to future 
technological transitions. It also enhances the flexibility of NET systems 
and enables integration with existing infrastructures, thereby reducing 
the need for new facilities as well as initial construction costs and 
operational risks. Experts are asked to consider this attribute with 
reference to: the extent of similarity in fundamental reactor designs 
and system architectures; the degree of material and component stan-
dardization across projects; the ease of integrating reprocessing and 
fuel cycle processes into existing infrastructures; and the potential 
of technical commonality to facilitate future technology transfer and 
platform upgrading.

Implemental feasibility (A6) assesses the viability of a NET proposal 
from theoretical research to practical application [26]. This assessment 
ensures that selected solutions are scientifically, technologically, eco-
nomically, and socially viable. The primary goal is to identify and 
select NET proposals with strong implementation prospects based on 
solid research, which should address critical development challenges, 
demonstrate smooth industrial applicability, and align with national 
strategic objectives. The scope of evaluation for this attribute is artic-
ulated through: the maturity of the underlying scientific research and 
the credibility of supporting evidence; the readiness of technological 
pathways for scale-up and demonstration; the feasibility of integration 
into existing industrial infrastructures and supply chains; and the align-
ment of the proposal with broader socio-economic needs and national 
strategic priorities.

5.3. Data source

This study involves five nuclear energy experts who collaborate 
in NET-R&D-PS. The experts were selected based on their significant 
contributions to both research and management in China’s advanced 
nuclear energy technology system, demonstrating deep domain knowl-
edge and practical experience. Their relative importance is ranked as 
E5 > E3 > E2 > E4 > E1. The probabilities for the four possible NET 
R&D scenarios in China by 2030, along with the corresponding attribute 
rankings under each scenario, were determined through a structured 
expert panel discussion. During this discussion, experts jointly assessed 
the likelihood of each scenario, considering both quantitative data and 
qualitative insights, and reached a consensus on the normalized prob-
abilities shown in Table  3. Subsequently, each expert independently 
ranked the NET R&D projects with respect to multiple attributes, as 
summarized in Table  B.1. Notably, the number of scenarios (𝐿 = 4) is 
fewer than the number of evaluation attributes (𝐽 = 6), which is con-
sidered a small-sample scenario. As discussed in Section 4.2, judgments 
from expert discussion are relatively reliable in such cases. Therefore, 
a statistics-based approach is used to determine the ambiguity set size, 
with a commonly applied significance level of 𝜌 = 0.95.

5.4. Result analysis

This study applies Algorithms 1 and 2 to solve the OPA-DR problem 
in this case study, which involves 5 experts, 6 attributes, 18 projects, 
and 4 scenarios. In terms of problem size, it comprises a total of 571 
variables, including 6 variables 𝛼, 24 worst-case probability variables 
𝑝𝑗𝑙, 540 weight variables 𝑤𝑖𝑗𝑟, and 1 weight disparity scalar 𝑧. The 
problem is defined by 547 equations: 6 KL-divergence equations for 
𝛼, 1 equation for the weight disparity scalar, and 540 equations for 
the weights 𝑤𝑖𝑗𝑟. As indicated by Algorithm 2, the procedure runs in 
polynomial time and can be solved efficiently, typically in less than 
one second on a standard computer for this case study. Table  4 shows 
the resulting worst-case distributions for each attribute. The results 
highlight distinct worst-case distributions: S1 dominates A1, A3, and 
A6; S2 dominates A2 and A5; and S3 dominates A4.

Fig.  1 shows the weights for each expert, attribute, project, and 
portfolio. For expert weights, E5 has the highest at 0.4380, followed by 
E3 at 0.2190, E2 at 0.1460, E4 at 0.1095, and E1 at 0.0876. Regarding 
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Table 3
Nominal distribution of potential scenarios and corresponding expected attribute rankings.
 Probability A1 A2 A3 A4 A5 A6  
 S1 0.2972 1 4 3 6 5 2  
 S2 0.3243 4 1 5 6 2 3  
 S3 0.2162 6 5 3 1 4 2  
 S4 0.1621 5 3 6 2 4 1  
 Expected ranking – 3.7021 3.0804 4.1343 4.2694 3.6478 2.1618 
Table 4
Worst-case distribution and corresponding expected attribute rankings.
 S1 S2 S3 S4 Worst-case expected ranking 
 A1 0.5202 0.2676 0.1081 0.1041 2.7597  
 A2 0.2364 0.5525 0.1334 0.0776 2.6311  
 A3 0.4318 0.1925 0.3142 0.0615 3.5695  
 A4 0.1836 0.2004 0.3833 0.2327 3.1526  
 A5 0.1546 0.5530 0.1671 0.1253 3.0487  
 A6 0.2963 0.1586 0.2156 0.3295 1.8292  
Fig. 1. Calculation results.
attribute weights, A6 has the highest weight of 0.2469, making it the 
most critical factor. Despite strong performance in other areas, substan-
tial execution challenges may hinder successful implementation, thus 
playing a key role in NET R&D project evaluation. A2 ranks second 
with a weight of 0.1716. Given the significant financial investment in 
NET R&D projects, their economic feasibility directly impacts funding 
and long-term development. Excessive costs or insufficient returns can 
considerably affect project progress. A1 ranks third with a weight of 
0.1636. This attribute is vital for NET R&D, as it involves long-term 
nuclear fuel supply and waste disposal, making it a critical factor. 
A5 holds the fourth position with a weight of 0.1481. Evaluating the 
compatibility of NET with existing systems and infrastructure is crucial, 
as incompatibility may result in high costs or failure to integrate with 
the current energy system. A4 ranks fifth with a weight of 0.1432, and 
A3 is sixth with a weight of 0.1265.

Regarding project weights, the top eight NET R&D projects are 
ranked as follows: K17, K18, K16, K15, K11, K14, K4, and K5. Among 
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these projects, K14 and K15 focus on combustion–breeding &
separation–purification, and K16, K17, and K18 are for combustion–
breeding & partial neutron poison removal. K4 is the optimal for 
combustion & single pass type, K5 is for combustion & separation–
purification, and K11 is for breeding & separation–purification. The 
results indicate that combustion–breeding approaches generally out-
perform pure combustion or breeding in NET-R&D-PS. As for portfo-
lio weights, the top four NET R&D portfolios are H3 (0.3613), H12 
(0.3597), H1 (0.3472), and H9 (0.3391). H3, made up of K4, K10, K16, 
K17, and K18, covers projects in combustion & single pass, breeding 
& separation–purification, and combustion–breeding & partial neutron 
poison removal. Its applications span all nine use cases, making it a 
well-balanced NET R&D portfolio. It performs particularly well in A1, 
A2, and A3, while its performance in A5 is relatively weaker compared 
to other portfolios. H12, consisting of K3, K7, K16, K17, and K18, 
is also a relatively balanced portfolio but lacks coverage in isotope 
production and military material manufacturing. Compared to H3, it 
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Fig. 2. Worst-case distribution under different significant levels.
Table 5
Worst-case expected attribute rankings of model validation.
 𝜌 A1 A2 A3 A4 A5 A6  
 0.75 2.8655 2.7356 3.6292 3.2783 3.1157 1.8664 
 0.85 2.8110 2.6818 3.5983 3.2135 3.0812 1.8472 
 0.90 2.7850 2.6561 3.5837 3.1826 3.0647 1.8381 
 0.95 2.7597 2.6311 3.5695 3.1526 3.0487 1.8292 
 0.99 2.7400 2.6116 3.5585 3.1291 3.0362 1.8222 
performs worse in A1, A2, A3, and A6, but outperforms in A4 and 
A5. H1, composed of K4, K9, K15, K16, and K17, shares the same 
balanced structure as H3. It particularly excels in A6, demonstrating 
a strong capacity in addressing execution-related challenges. H9, made 
up of K3, K5, K15, K16, and K17, is structurally similar to H12 and 
also lacks applications in isotope and military material domains. While 
it underperforms in A1, A3, and A6 relative to H3, H12, and H1, it 
shows a distinct advantage in A5, highlighting its strength in system 
compatibility.

5.5. Model validation

5.5.1. Sensitivity analysis of significance level
This section analyzes the sensitivity of OPA-DR to changes in the 

significance level, which directly affects the size of the ambiguity set. 
Experiments are performed for significance levels of 0.85, 0.90, 0.925, 
0.95, and 0.99, respectively. Fig.  2 and Table  5 display the worst-case 
distributions and their associated expected attribute rankings.

Fig.  2 illustrates that, for the worst-case distribution, as the signif-
icance level increases, the probability of the optimal scenario for each 
attribute also rises. Moreover, Table  5 shows that with an increasing 
significance level, the worst-case expected rankings for all attributes 
shift toward lower values. The optimal weight disparity scalar of OPA-
DR decreases consistently as the significance level increases, in line 
with the closed-form solution from Theorem  1. Regarding the results 
for projects and portfolios, the final rankings remain consistent across 
different significance levels. This observation highlights the numerical 
stability of OPA-DR with respect to the significance level, enabling DMs 
to choose appropriate levels based on their risk preferences without 
concern for significant changes in the optimal solution.

5.5.2. Perturbation analysis of project rankings
This section conducts a perturbation analysis of OPA-DR in relation 

to project rankings, assessing the impact of ranking deviations on 
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the final outcomes, which demonstrates the reliability of OPA-DR in 
the face of uncertainties in expert judgments. Specifically, perturbed 
samples are generated by adding Gaussian noise to original expert-
provided project rankings, resulting in normal distributions centered 
around each ranking with standard deviations of 1∕4, 1∕3, and 5∕12. 
This setting follows the empirical rule that approximately 99.7% of data 
in a normal distribution falls within three standard deviations of the 
mean, and thus these standard deviations yields perturbation radii 𝜎 of 
0.75, 1, and 1.25, respectively. The following stopping condition are 
defined to assess the perturbation outcomes:
‖(argmax

𝑘∈
𝑝𝑚𝑘,1,… , argmax

𝑘∈
𝑝𝑚𝑘,𝑅)

⊤ − (𝑘⋆1 ,… , 𝑘⋆𝑅)
⊤
‖2 = 0,

‖(max
𝑘

𝑝𝑚𝑘,1,… ,max
𝑘

𝑝𝑚𝑘,𝑅)
⊤
‖2 ≥ 𝑑,

where 𝑝𝑚𝑘,𝑟 is the probability that alternative 𝑘 is assigned to rank 
𝑟 at iteration 𝑚, 𝑘∗𝑟  denotes the 𝑟th ranked alternative in the refer-
ence solution, and 𝑑 = 2.1213 corresponds to the 𝓁2 norm of the 
constant vector (1∕2,… , 1∕2) in 18 dimensions. The first condition 
ensures convergence of the final ranking to the original ranking after a 
specified number of iterations. The second condition requires that the 
convergence probability meets a minimum threshold. A maximum of 
2000 iterations is allowed for convergence, with at least 100 iterations 
required for statistical reliability.

The simulation results show that for radii 𝜎 = 0.75 and 𝜎 = 1, OPA-
DR converges within 100 and 883 iterations, respectively, while for 
radius 𝜎 = 1.25, simulation fails to meet the stopping condition and 
reaches the maximum iteration limit of 2000. This failure primarily 
occurs because the last three projects do not consistently converge to 
the original rankings, though it does not affect the final outcomes.

Fig.  3 shows ranking results and associated probabilities for differ-
ent perturbation levels. The bar plot reveals that as the radius increases, 
the maximum probability of each project achieving optimal decreases. 
For 𝜎 = 0.75, most alternatives show high confidence with probabilities 
near 1, whereas for 𝜎 = 1.25, many probabilities fall below 0.6, 
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Fig. 3. Ranking results and associated probabilities under different perturbation levels.
indicating a marked decline in prediction certainty. The case for 𝜎 = 1
lies between the above two cases. As for project rankings, the cases 
𝜎 = 0.75 and 𝜎 = 1 present the identical project rankings with the 
original rankings, while 𝜎 = 1.25 shows some minor fluctuations in the 
rankings. Among all 18 projects, the top 15 rankings remain consistent 
across difference radii. Specifically, for 𝜎 = 1.25, K1 drops from 15th 
to 16th, K6 rises from 16th to 15th, and K8 moves from 17th to 18th, 
with most changes confined to adjacent positions. This is due to the fact 
that the projects with reversed rankings have nearly identical original 
weights and relatively low rankings. 

Fig.  4 illustrates the distributions of portfolio weights for different 
perturbation radii, which display Gaussian-like patterns consistent with 
the sampling strategy. It also indicates that as the perturbation radius 
increases, weight variability intensifies, reflecting reduced consensus 
across the simulated rankings. Overall, based on the above findings, 
OPA-DR demonstrates considerable stability to project ranking pertur-
bations, with the ranking structure remaining stable even under higher 
noise, although the convergence speed and confidence may decline in 
uncertain decision-making contexts.

5.5.3. Comparison analysis
This section conducts comparison analysis of OPA-DR to validate 

its rationality, with the benchmark methods of robust OPA (OPA-
R), stochastic OPA (OPA-S) based on nominal distribution, and OPA 
for each scenario. Specifically, the following benchmark models are 
constructed:

• OPA-R considers the case where the true attribute rankings lie 
within the support sets constructed from the four scenarios and 
optimizes against the worst-case ranking [28,41]:

max
𝑧,𝒘∈

{

𝑧 ∶ 𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧 ≤ 𝑡𝑖 min

𝑙∈
{𝑠𝑙𝑗}𝑤𝑖𝑗𝑟,∀(𝑖, 𝑗, 𝑟) ∈ 

}

.

• OPA-S treats attribute rankings as random variables following 
the nominal distribution P̂ in Table  3 and optimizes based on 
expected rankings:
max
𝑧,𝒘∈

{

𝑧 ∶ 𝑅𝑢ROC𝑟 𝑧 ≤ 𝑡𝑖E𝑠̃𝑗∼P̂
[𝑠̃𝑗 ]𝑤𝑖𝑗𝑟,∀(𝑖, 𝑗, 𝑟) ∈ 

}

.

• OPA is applied to each scenario, treating them as determination 
problems. For each scenario 𝑙 ∈ , the formulation is:
max

{

𝑧 ∶ 𝑅𝑢ROC𝑧 ≤ 𝑡 𝑠 𝑤 ,∀(𝑖, 𝑗, 𝑟) ∈ 
}

.

𝑧,𝒘∈ 𝑟 𝑖 𝑗𝑙 𝑖𝑗𝑟
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Fig.  5 illustrates the weight results for attributes, alternatives, and 
portfolios, highlighting differing attitudes toward uncertainty across 
frameworks. In general, the results of OPA-DR, OPA-R, and OPA-S 
fall within the envelope defined by the OPA results of four scenarios. 
For attributes, OPA assigns the highest weight to the top-ranked at-
tribute in each scenario, which is optimal for a deterministic future 
but lacks robustness against scenario uncertainty. In contrast, OPA-R 
assigns equal weights to the attributes ranked first in each scenario, 
namely A1, A2, A4, and A6, ensuring robustness but introducing over-
conservatism. OPA-S, however, aligns the attribute weight results with 
the expected rankings based on the nominal distribution. OPA-DR, in 
turn, provides attribute weight results that strike a balance between 
OPA-S and OPA-R, avoiding both excessive conservatism and overre-
liance on the nominal distribution. Regarding projects and portfolios, 
the relationships among OPA-DR, OPA-R, and OPA-S are similar to that 
of the attribute results and fall within the range defined by the OPA 
results of the four scenarios. However, the OPA results for each scenario 
show variation, especially for K17 and K18, which exhibit significant 
shifts in their weight distributions, indicating that the original OPA 
model is highly sensitive to scenario-specific inputs.

We further calculate the Pearson correlation coefficients between 
the outcomes of OPA-DR and the other benchmarks, as illustrated in 
Fig.  6. For attribute weights, the OPA results across the four scenarios 
vary significantly and show negative correlations, with the overall 
correlation typically below 0.5. Many negative correlations appear 
in these scenarios, though the correlations between OPA-DR, OPA-
S, and OPA (S4) are relatively high. Regarding project and portfolio 
weights, OPA-DR exhibits strong correlations with OPA-S (0.9996) and 
OPA-R (0.9883), outperforming OPA-R and OPA-S in its correlation 
with other scenarios, and significantly exceeding the correlation of 
any individual scenario. Overall, OPA-DR provides more stable and 
balanced weight assignments than benchmark methods, combining the 
strengths of stochastic and robust approaches to mitigate distributional 
uncertainty and worst-case scenarios.

6. Conclusion

NET has emerged as a vital means to achieve a clean, efficient, 
and sustainable global energy supply, with the optimal NET-R&D-PS 
playing a crucial role in ensuring technological innovation, enhanced 
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Fig. 4. Distributions of alternative weights under different perturbation levels.

Fig. 5. Weight outcomes of different approaches.

Fig. 6. Pearson correlation coefficients among the weight outcomes of different approaches.
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safety performance, clean sustainability, and cost-effectiveness maxi-
mization. However, current research on NET-R&D-PS, particularly in 
the nuclear energy sector, is limited and does not adequately address 
the scenario uncertainties faced by NET R&D. To address this, this study 
introduces OPA-DR to tackle the NET-R&D-PS problem under scenario 
uncertainty, which significantly affects attribute rankings. Specifically, 
OPA-DR enhances the traditional OPA by replacing deterministic at-
tribute rankings with worst-case expected rankings under uncertainty. 
Additionally, this study proposes an ambiguity set based on KL diver-
gence for OPA-DR to characterize the possible family of distributions 
within a given nominal distribution for scenarios. In designing the 
ambiguity set size, it is found that the number of attributes serves as 
the basis for distinguishing small-scale scenarios (where the number 
of scenarios is less than the number of attributes). Based on this, 
we design small-scale scenario ambiguity sets using a statistics-based 
approach and large-scale scenario ambiguity sets using an optimization-
based approach. Subsequently, based on the structural properties of 
OPA, we propose a solution algorithm that requires solving a one-
dimensional equation and analytically calculating the optimal weight 
using the closed-form solution, making it a polynomial-time algorithm 
capable of efficiently solving large-scale problems. Finally, this study 
analyzes the sensitivity of OPA-DR under different alternative util-
ity functions and weight difference constraint perturbations from a 
theoretical perspective.

This study provides an illustrative demonstration of NET-R&D-PS 
for China 2030 Vision Plan. The case study identifies eighteen R&D 
projects and twelve portfolios across five categories of nuclear energy 
systems, spanning nine applications. Evaluation attributes for the iden-
tified NET R&D portfolios include sustainability, economic viability, 
safety, proliferation resistance, technical compatibility, and implemen-
tation feasibility. Considering exportability of NET and breakthrough 
potential of OCET, four potential NET R&D scenarios for 2030 and 
their respective probability distributions are determined, along with the 
attribute importance ranking for each scenario. The results show the 
worst-case distribution of attributes within the proposed ambiguity set 
for OPA-DR, which would provide DMs with valuable insights into NET 
R&D prospects. Additionally, the NET-R&D-PS results identify H3 as the 
optimal portfolio. H3 demonstrates a balanced and consistently strong 
performance, covering breeding, separation–purification, combustion, 
and partial neutron poison removal, with applications spanning all 
nine use cases. This study validates the model by testing OPA-DR 
with varying significance levels and project ranking parameters, and 
compares it with robust OPA and stochastic OPA based on nominal 
distribution. The results confirm the robustness and stability of the 
KL divergence-based OPA-DR approach, validating its effectiveness in 
addressing the MADM-based NET-R&D-PS.

It is important to note that the results and conclusions are derived 
within a specific context. Therefore, further testing across various 
NET-R&D-PS scenarios is necessary to confirm their effectiveness. Fur-
thermore, the proposed approach is adaptable to other energy sectors 
(e.g., renewable energy R&D and hydrogen storage technologies) by fol-
lowing the implementation steps outlined in Section 4.4 and adhering 
to the provided several notes. Moreover, this study assumes attribute 
independence, but future research could explore scenarios that in-
corporate attribute interactions, which are more typical in real-world 
contexts. This could be achieved using the method proposed by Wang 
[42], which models correlations between indicators in the ranking 
parameters using an exponential form. In this case, the theoretical proof 
derived in this study remains consistent. Additionally, while this study 
proposes different approaches to determine the ambiguity set size to 
minimize the impact of biased or inconsistent expert opinions, it is 
recognized that such systematic biases may still persist. To address this, 
we propose two feasible modeling approaches to improve the proposed 
approach in the future. The first approach considers a globalized DRO 
formulation, which ensures no constraint violation for any distribution 
within a predefined ambiguity set, while allowing potential constraint 
13 
violations for distributions outside the ambiguity set. This method can 
smoothly extend to the proposed approach without adding computa-
tional cost, handling cases where the true distribution lies outside the 
ambiguity set constructed by nominal distribution. For further details 
on globalized DRO modeling, we refer the reader to Liu et al. [54]. The 
second approach applies Bayesian DRO modeling, treating the nominal 
distribution provided by experts as the prior and updating the posterior 
distribution to mitigate bias. For more information on Bayesian DRO 
modeling, we refer the reader to Shapiro et al. [48].
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Appendix A. Technical proofs

Proof of Proposition  1.  Assume the given nominal distribution P̂ is a 
random sample independently and identically drawn from an unknown 
distribution P. Based on this, we can conduct the following hypothesis 
test:

• 𝐻0: P̂ is drawn from P;
• 𝐻1: P̂ is not drawn from P.
Given a threshold 𝜌, if the test does not reject 𝐻0, then P passes the 

test and can be regarded as the distribution constructing the ambiguity 
set. Thus, the ambiguity set of distributions obtained from the test is: 

ℱ (P̂, 𝜌) ∶=
{

P ∶ 𝑇 𝐿
𝜙𝐾𝐿

(P̂,P) ≤ 𝜌
}

,

∶=

{

P ∶ 2𝐿
𝜙′′
𝐾𝐿(1)

𝐷𝜙𝐾𝐿
(P̂,P) ≤ 𝜌

}

,

∶=

{

P ∶ 𝐷𝜙𝐾𝐿
(P̂,P) ≤ 𝜃 =

𝜙′′
𝐾𝐿(1)𝜌
2𝐿

}

.

(A.1)

Using the asymptotic distribution of 𝑇 𝐿
𝜙𝐾𝐿

(P̂,P) (which converges 
to a chi-squared distribution with 𝐿 − 1 degrees of freedom), the size 
parameter 𝜃 of the KL divergence ambiguity set can be determined at 
a significance level 𝛿 = P

(

𝑇 𝐿
𝜙𝐾𝐿

(P̂,P) > 𝜌|𝐻0

)

. Let 𝜌 = 𝜒2
𝐿−1,1−𝛿 , then 

the ambiguity set corresponds to the 1−𝛿 confidence region of the true 
distribution P. Furthermore, noting that P̂ and P are interchangeable, 
the convergence result still holds. Therefore, we have the results in 
Proposition  1. □

Proof of Lemma  2.  For any (𝑖, 𝑗, 𝑟) ∈  and fixed 𝑤𝑖𝑗𝑟, the expert 
ranking 𝑡𝑖 is a deterministic parameter, leading to: 

min E𝝃𝑗∼P𝑗 [𝑡𝑖𝑠𝑗𝑤𝑖𝑗𝑟] ⇔ 𝑡𝑖𝑤𝑖𝑗𝑟 min E𝑠𝑗∼P𝑗 [𝑠𝑗 ]. (A.2)

P𝑗∈ℱ𝐾𝐿(P̂,𝜃) P𝑗∈ℱ𝐾𝐿(P̂,𝜃)
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Therefore, the worst-case expectation of attribute ranking under the KL-
divergence ambiguity set can be determined by solving the following 
convex optimization problem:

min
P𝑗∈R𝐿

+

𝐿
∑

𝑙=1
𝑝𝑗𝑙𝑠𝑗𝑙 ,

s.t.
𝐿
∑

𝑙=1
𝑝𝑗𝑙 log

( 𝑝𝑗𝑙
𝑝̂𝑙

)

≤ 𝜃,

𝐿
∑

𝑙=1
𝑝𝑗𝑙 = 1.

(A.3)

The Lagrangian of Eq.  (A.3) is given by: 

(𝛼𝑗 , 𝛽𝑗 ,𝒑𝑗 ) =
𝐿
∑

𝑙=1
𝑝𝑗𝑙𝑠𝑗𝑙 + 𝛼𝑗

(

𝜃 −
𝐿
∑

𝑙=1
𝑝𝑗𝑙 log

( 𝑝𝑗𝑙
𝑝̂𝑙

)

)

+ 𝛽𝑗

(

1 −
𝐿
∑

𝑙=1
𝑝𝑗𝑙

)

,

= 𝛼𝑗𝜃 + 𝛽𝑗 +
𝐿
∑

𝑙=1
𝑝𝑗𝑙

(

𝑠𝑗𝑙 − 𝛼𝑗 log
( 𝑝𝑗𝑙

𝑝̂𝑙

)

− 𝛽𝑗

)

.

(A.4)

where 𝛼𝑗 ≥ 0 and 𝛽𝑗 are the dual variables.
Note that the KKT conditions are both necessary and sufficient for 

optimality in convex optimization problems. By taking the derivative 
with respect to 𝑝𝑗𝑙 and setting it to zero, for all 𝑙 ∈ , we get:
𝜕(𝛼𝑗 , 𝛽𝑗 ,𝒑𝑗 )

𝜕𝑝𝑗𝑙
= 0 ⇔ 𝑠𝑗𝑙 − 𝛼𝑗

(

1 + log
( 𝑝𝑗𝑙

𝑝̂𝑙

))

− 𝛽𝑗 = 0,

which yields: 

𝑝𝑗𝑙 = 𝑝̂𝑙 exp
( 𝑠𝑗𝑙 − 𝛽𝑗

𝛼𝑗
− 1

)

. (A.5)

Substituting Eq.  (A.6) into the normalization condition gives:
𝐿
∑

𝑙=1
𝑝̂𝑙 exp

( 𝑠𝑗𝑙 − 𝛽𝑗
𝛼𝑗

− 1
)

= 1 ⇒ exp
(

−
𝛽𝑗 + 𝛼𝑗

𝛼𝑗

) 𝐿
∑

𝑙=1
𝑝̂𝑙 exp

( 𝑠𝑗𝑙
𝛼𝑗

)

= 1.

Define 𝑍(𝛼𝑗 ) =
∑𝐿

𝑙=1 𝑝̂𝑙 exp
(

𝑠𝑗𝑙
𝛼𝑗

)

, yielding: 

𝛽𝑗 = −𝛼𝑗 log𝑍(𝛼𝑗 ) − 𝛼𝑗 . (A.6)

Plugging Eq. (A.6) into Eq.  (A.5) provides the form of worst-case 
distribution: 
𝑝𝑗𝑙 =

1
𝑍(𝛼𝑗 )

𝑝̂𝑙 exp
( 𝑠𝑗𝑙
𝛼𝑗

)

, ∀𝑙 ∈ . (A.7)

According to the KKT condition, the optimal value of 𝛼𝑗 can be 
obtained by solving the following equation: 

𝛼⋆𝑗 = arg
𝛼𝑗

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿
∑

𝑙=1

𝑝̂𝑙 exp
(

𝑠𝑗𝑙
𝛼𝑗

)

𝑍(𝛼𝑗 )
log

⎛

⎜

⎜

⎜

⎜

⎝

exp
(

𝑠𝑗𝑙
𝛼𝑗

)

𝑍(𝛼𝑗 )

⎞

⎟

⎟

⎟

⎟

⎠

= 𝜃

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (A.8)

Note that the function on the left-hand side of Eq.  (A.8) is strictly 
decreasing and continuous in 𝛼𝑗 , ensuring the existence and uniqueness 
of the optimal solution. Substituting 𝛼⋆𝑗  into Eq.  (A.7) gives the worst-
case distribution P⋆

𝑗  that satisfies the KKT condition, which gives the 
results in Lemma  2. □

Proof of Theorem  1.  Given the worst-case distribution P⋆
𝑗 , we have 

OPA-DR in the following form: 
max
𝑧,𝒘

𝑧,

s.t. 𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧 ≤ 𝑡𝑖

( 𝐿
∑

𝑙=1
𝑝⋆𝑗𝑙𝑠𝑗𝑙

)

𝑤𝑖𝑗𝑟, ∀(𝑖, 𝑗, 𝑟) ∈  ,

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝑤𝑖𝑗𝑟 = 1,

(A.9)
𝑤𝑖𝑗𝑟 ≥ 0, ∀(𝑖, 𝑗, 𝑟) ∈  .
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which is a typical linear programming problem. Thus, employing the 
Lagrange multiplier method, we have: 

(𝑧,𝒘, 𝛼, 𝜷) = 𝑧+𝛼

(

1 −
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝑤𝑖𝑗𝑟

)

+
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝛽𝑖𝑗𝑟

(

𝑡𝑖

( 𝐿
∑

𝑙=1
𝑝⋆𝑗𝑙𝑠𝑗𝑙

)

𝑤𝑖𝑗𝑟 − 𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧

)

.

(A.10)

Following Wang [24], we always have: 
𝜕(𝑧,𝒘, 𝛼, 𝜷)

𝜕𝛼
=

𝜕(𝑧,𝒘, 𝛼, 𝜷)
𝛽𝑖𝑗𝑟

= 0, ∀(𝑖, 𝑗, 𝑟) ∈  , (A.11)

which yields: 

𝑤⋆
𝑖𝑗𝑟 =

𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧⋆

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

, ∀(𝑖, 𝑗, 𝑟) ∈ , (A.12)

and 
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝐾
∑

𝑟=1
𝑤⋆

𝑖𝑗𝑟 = 1. (A.13)

Substituting Eq.  (A.12) into Eq.  (A.13) yields the closed-form solution 
of OPA-DR shown in Theorem  1. □

Proof of Corollary  1.  By the closed-form solution in Theorem  1, we 
have:

𝑧⋆(𝒖𝛿) = 1

/

⎛

⎜

⎜

⎝

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1

𝑅𝑢𝛿𝑟
𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

⎞

⎟

⎟

⎠

= 1

/

⎛

⎜

⎜

⎝

𝑅
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

1
𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

⎞

⎟

⎟

⎠

= 𝑧⋆, (A.14)

where the second equality follows from ∑𝑅
𝑟=1 𝑢

𝛿
𝑟 = 1. It follows that, for 

any (𝑖, 𝑗, 𝑟) ∈  ,

|𝑤⋆
𝑖𝑗𝑟 −𝑤⋆

𝑖𝑗𝑟(𝒖
𝛿)| =

|

|

|

|

|

|

𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧⋆

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

−
𝑅𝑢𝛿𝑟𝑧

⋆(𝒖𝛿)

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

|

|

|

|

|

|

= 𝑅𝑧⋆

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

|

|

|

𝑢𝑅𝑂𝐶
𝑟 − 𝑢𝛿𝑟

|

|

|

, (A.15)

which gives the results in Corollary  1. □

Proof of Corollary  2.  Let (𝜆⋆, 𝜸⋆) be optimal for the dual problem 
of Eq.  (23): 
min
𝜆,𝜸

𝜆,

s.t. 𝑡𝑖

( 𝐿
∑

𝑙=1
𝑝⋆𝑗𝑙𝑠𝑗𝑙

)

𝛾𝑖𝑗𝑟 ≤ 𝜆, ∀(𝑖, 𝑗, 𝑟) ∈  ,

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1

( 𝑅
∑

ℎ=𝑟

1
ℎ

)

𝛾𝑖𝑗𝑟 = 1,

𝛾𝑖𝑗𝑟 ≥ 0, ∀(𝑖, 𝑗, 𝑟) ∈  .

(A.16)

Suppose that (𝑧,𝒘) is feasible for the perturbation problem in
Eq.  (23). Then, we have, by strong duality, 

𝑧⋆ ≥ 𝑧 +
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝛾⋆𝑖𝑗𝑟

(

𝑡𝑖

( 𝐿
∑

𝑙=1
𝑝⋆𝑗𝑙𝑠𝑗𝑙

)

𝑤𝑖𝑗𝑟 − 𝑅𝑢𝑅𝑂𝐶
𝑟 𝑧

)

+ 𝜆⋆(1 −
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝑤𝑖𝑗𝑟),

≥ 𝑧 +
𝐼
∑

𝐽
∑

𝑅
∑

𝛾⋆𝑖𝑗𝑟𝜀𝑖𝑗𝑟 + 𝜆⋆𝜖,

(A.17)
𝑖=1 𝑗=1 𝑟=1
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Table B.1
Project ranking under each attribute given by experts.
 Expert ID Project ID A1 A2 A3 A4 A5 A6 Expert ID Project ID A1 A2 A3 A4 A5 A6 
 E1 P1 18 17 18 4 12 3 E2 P1 16 18 15 5 11 3  
 P2 16 15 17 8 17 7 P2 17 14 18 8 17 9  
 P3 15 14 7 5 15 10 P3 15 15 7 1 18 4  
 P4 17 18 11 2 18 8 P4 18 17 13 6 6 5  
 P5 12 13 16 9 6 4 P5 13 16 11 9 16 10 
 P6 13 16 12 13 3 9 P6 14 10 8 10 3 14 
 P7 14 11 8 12 7 18 P7 11 12 6 15 7 17 
 P8 10 10 3 18 11 17 P8 12 13 12 16 8 18 
 P9 7 8 9 14 13 5 P9 10 6 10 18 12 6  
 P10 9 6 13 11 1 11 P10 4 11 16 17 1 15 
 P11 8 9 15 15 8 14 P11 8 8 17 13 10 11 
 P12 11 12 14 16 16 1 P12 9 9 14 12 13 1  
 P13 5 7 6 1 14 15 P13 7 7 4 2 15 8  
 P14 4 4 5 10 9 12 P14 5 4 5 14 5 12 
 P15 6 5 10 17 2 2 P15 6 5 9 11 2 2  
 P16 2 3 4 6 10 13 P16 2 2 3 4 14 13 
 P17 1 1 2 7 4 6 P17 1 1 2 7 4 7  
 P18 3 2 1 3 5 16 P18 3 3 1 3 9 16 
 E3 P1 18 15 16 2 11 3 E4 P1 18 17 18 2 11 2  
 P2 17 18 12 7 18 4 P2 17 18 17 7 16 4  
 P3 11 14 7 1 16 9 P3 16 16 2 8 12 15 
 P4 14 17 17 3 15 5 P4 12 14 5 6 18 7  
 P5 15 13 13 8 9 11 P5 15 11 13 17 15 5  
 P6 13 16 5 17 4 6 P6 13 15 8 10 4 6  
 P7 16 11 11 11 3 18 P7 14 13 15 9 1 11 
 P8 6 12 9 18 6 17 P8 5 8 6 18 5 18 
 P9 4 5 10 9 8 7 P9 6 7 10 15 13 8  
 P10 8 10 14 12 1 13 P10 10 9 9 13 2 13 
 P11 9 8 18 10 12 14 P11 8 10 16 16 9 12 
 P12 12 9 15 16 10 1 P12 7 12 14 11 6 3  
 P13 10 7 6 14 17 12 P13 9 5 7 3 10 10 
 P14 5 3 3 13 5 15 P14 4 4 11 14 17 16 
 P15 7 4 4 15 2 2 P15 11 6 12 12 3 1  
 P16 2 2 2 5 13 10 P16 2 2 4 5 14 14 
 P17 1 1 1 6 7 8 P17 3 1 1 4 7 9  
 P18 3 6 8 4 14 16 P18 1 3 3 1 8 17 
 E5 P1 17 17 17 2 14 1 E5 P10 9 8 13 11 2 12 
 P2 18 14 18 3 17 4 P11 10 10 15 12 11 10 
 P3 15 15 5 4 16 11 P12 11 11 14 15 12 2  
 P4 16 18 12 5 15 5 P13 8 9 6 1 18 13 
 P5 12 13 16 17 9 6 P14 5 4 7 9 8 14 
 P6 13 16 4 18 3 7 P15 6 5 8 10 1 3  
 P7 14 12 9 13 5 16 P16 2 2 3 7 13 15 
 P8 4 6 10 16 7 17 P17 1 1 1 8 4 9  
 P9 7 7 11 14 10 8 P18 3 3 2 6 6 18 
where the last inequality follows from 𝛾⋆𝑖𝑗𝑟 ≥ 0 for all (𝑖, 𝑗, 𝑟) ∈  .
Thus, for any 𝑧 feasible for the perturbation problem, we have: 

𝑧 ≤ 𝑧⋆ −
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝛾⋆𝑖𝑗𝑟𝜀𝑖𝑗𝑟 − 𝜆⋆𝜖, (A.18)

which yields: 

𝑧⋆(𝜺, 𝜖) ≤ 𝑧⋆ −
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1
𝛾⋆𝑖𝑗𝑟𝜀𝑖𝑗𝑟 − 𝜆⋆𝜖. (A.19)

Let 𝜎𝑖𝑗𝑟 = 𝑅𝑢𝑅𝑂𝐶
𝑟 𝛾𝑖𝑗𝑟 for all (𝑖, 𝑗, 𝑟) ∈  . Following the symmetric 

argument as the proof of Theorem  1, we have, by Lagrange multiplier 
method, 

𝜆⋆ = 1

/

⎛

⎜

⎜

⎝

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1

𝑅𝑢𝑅𝑂𝐶
𝑟

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

⎞

⎟

⎟

⎠

= 𝑧⋆, (A.20)

and 

𝜎⋆𝑖𝑗𝑟 =
𝑅𝑢𝑅𝑂𝐶

𝑟 𝜆⋆

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

, ∀(𝑖, 𝑗, 𝑟) ∈  . (A.21)
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Thus, we have: 

𝑧⋆(𝜺, 𝜖) ≤ 𝑧⋆ −
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1

𝑧⋆

𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

𝜀𝑖𝑗𝑟 − 𝑧⋆𝜖,

=
⎛

⎜

⎜

⎝

1 − 𝜖 −
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅
∑

𝑟=1

𝜀𝑖𝑗𝑟
𝑡𝑖
∑𝐿

𝑙=1 𝑝
⋆
𝑗𝑙𝑠𝑗𝑙

⎞

⎟

⎟

⎠

𝑧⋆.

(A.22)

Following the symmetric argument as the proof of Theorem  1, we 
can conclude that the equality in the upper bound always holds, which 
gives the results in Corollary  2. □

Appendix B. Case study data

See Table  B.1.

Data availability

Data will be made available on request.
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