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ARTICLE INFO ABSTRACT

Keywords: A Selecting appropriate nuclear energy technology (NET) R&D portfolios is essential for shaping the national
Nuclear energy technology nuclear energy landscape, supporting global carbon reduction efforts, and advancing the UN Sustainable
R&D portfolio selection Development Goal for affordable and clean energy. However, research on NET R&D portfolio selection (NET-

Scenario uncertainty

Multi-attribute decision-making
Distributionally robust ordinal priority
approach

R&D-PS) remains limited and fails to adequately address the scenario uncertainty. Thus, this study proposes
a distributionally robust ordinal priority approach (OPA-DR) for NET-R&D-PS under scenario uncertainty that
affects the importance of evaluation attributes. Although the alternative rankings under possible scenarios and
their corresponding nominal distributions would be provided, the high uncertainty of future R&D scenarios
renders the nominal distributions unreliable. To address this, this study introduces an ambiguity set based on
Kullback-Leibler (KL) divergence for OPA-DR, with ambiguity set sizes designed for large- and small-sample
problems, characterizing all possible attribute ranking distributions derived from the nominal distribution.
This study develops an efficient exact solving algorithm for OPA-DR, requiring only the solution of a one-
dimensional equation and the calculation of the optimal solution in closed form with polynomial time
complexity, making it suitable for large-scale problems. This study analyzes the OPA-DR sensitivity under
varying utility functions and constraint perturbations. The effectiveness of OPA-DR is validated by the NET-
R&D-PS for China 2030 Vision Plan, providing insights for scenario analysis, attribute selection, and portfolio
selection.

1. Introduction In the decision-making process of NET-R&D-PS, decision-makers
(DMs) must balance multiple factors such as environmental impact,

Nuclear power is essential in addressing global energy demands, safety design, and economic viability [6,7]. These factors often con-
combating climate change, and achieving the United Nations Sustain- flict, as enhancing safety may raise costs, while reducing costs may
able Development Goal 7 (SDG7, Affordable and Clean Energy) [1]. As harm environmental sustainability. DMs must navigate these trade-
a clean energy source, nuclear power significantly reduces greenhouse offs, considering long-term goals and broader societal impacts, which
gas emissions, helping to mitigate climate change. With its reliable means effective NET-R&D-PS decision-making requires subjective judg-
and stable power generation capacity, nuclear energy technology (NET) ment and careful evaluation of the interdependencies between these

ensures fl sustainable energ}f supplyf meets affordable demand, supports competing objectives [8]. Moreover, the uncertainty surrounding the
economic growth, and drives social development [2]. Current NET

R&D process typically includes four stages and twelve steps, posing
considerable technical challenges [3]. Sovacool et al. [4] analyzed the
costs of 180 nuclear reactors, of which 64 projects exceeded budgets
by over $1 billion, with 14 projects surpassing $5 billion in additional
costs, and 10 projects exceeding 400% cost overruns, resulting in an
average project cost increase of 117%. This underscores the importance
of the strategic planning of NET R&D portfolio selection (NET-R&D-PS) could boost its potential. The prospects for nuclear technology exports
in the advancement of the nuclear energy sector [5]. also play a crucial role, as global demand and favorable international

future of NET R&D is another critical aspect of the planning process.
Scenario uncertainty is particularly significant in this context, as it
can substantially influence the decision-making outcomes [9,10]. For
example, the pace of advancements in other clean energy technologies,
such as solar, wind, and hydrogen, could reduce the demand for nuclear
power, while breakthroughs in nuclear fusion or other innovations
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markets could improve economic feasibility. However, market fluctu-
ations and regulatory changes pose risks to profitability. DMs must
navigate these uncertainties alongside the technical complexities of
nuclear energy, considering the evolving landscape of clean energy and
market dynamics [11].

NET-R&D-PS is a critical application of project portfolio selection
(PPS) problems in the nuclear energy domain, yet it has received
limited attention in current research. Current quantitative-based PPS
studies primarily categorize into two types for identifying the optimal
portfolio [12]. One approach involves evaluating projects using multi-
attribute decision-making (MADM) technique and then selecting the
best portfolio based on constrained project generation [13-16]. The
other approach generates feasible portfolios first based on constraints,
such as project interactions, resource dependencies, and implementa-
tion feasibility, followed by evaluation using MADM to determine the
optimal portfolio [17-19]. Although some studies address input data
(e.g., evaluation scores, semantic values or pairwise comparison values)
uncertainty through grey system theory [20] and fuzzy theory [21],
they often overlook the impact of scenario uncertainty on the evalua-
tion model, which typically exceeds the uncertainties in specific project
or portfolio input performance. Another non-negligible source of un-
certainty in this input data is the fact that decision analysts typically
do not have the level of confidentiality to access detailed NET R&D
data. Wang et al. [22] suggests that using ranking data for decision-
making can effectively deal with data inaccessibility and uncertainty,
a perspective not yet explored in current PPS studies. Notably, ordinal
priority approach (OPA) is a novel MADM method employing linear
programming [23]. It uses ranking data that reflects expert preferences
as decision data, offering a potentially powerful foundation for NET-
R&D-PS. By solving a linear programming model, OPA concurrently
assigns weights to experts, attributes, and alternatives, enabling rank-
ing without requiring data standardization, expert opinion aggregation,
or predetermined weights [24,25]. However, the original OPA model
and its current extensions do not account for the scenario uncertainty
in NET-R&D-PS, which is a key concern for DMs.

To address the above limitations, this study proposes a distribu-
tionally robust OPA (OPA-DR) for NET-R&D-PS under scenario uncer-
tainty based on distributionally robust optimization (DRO) paradigm.
In NET-R&D-PS, the attribute rankings are associated with the scenarios
faced by NET-R&D, each with corresponding realization probabilities,
forming the nominal distribution of attribute rankings. The proposed
approach employs a Kullback-Leibler (KL) divergence-based ambiguity
set with the set size designed for both small- and large-sample cases. To
effectively solve the KL divergence-based OPA-DR for practical usage,
we develop a solution algorithm with polynomial time complexity,
suitable for large-scale problems. The main contribution are:

» Methodological contribution: This study introduces a distribution-
ally robust extension of OPA to address scenario uncertainty, pre-
senting a novel formulation in the OPA literature. Based on OPA
properties, this study identifies the basis for distinguishing small-
scale from large-scale scenarios and introduces an optimization-
based approach for determining ambiguity sets in large-scale
scenarios, along with a statistics-based approach for small-sample
cases. Unlike commonly used reformulation techniques for the KL
divergence-based DRO, this study presents an efficient solving al-
gorithm based on the structural properties of OPA, only requiring
the solution of a one-dimensional equation and the calculation of
the optimal solution through a closed-form expression.

Theoretical contribution: This study presents the closed-form
solution of OPA-DR, analyzing performance differences among
OPA-DR, robust OPA, and stochastic OPA based on nominal dis-
tribution. In addition, this study conducts a theoretical sensitivity
analysis on the optimal weight disparity scalar and weights of
OPA-DR from various utility functions for ranked alternatives,
and constraint perturbations. The proven results can be similarly
applied to the sensitivity analysis of other OPA models.
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» Practical contribution: This study presents a decision-making
method aligned with NET-R&D-PS practices. The method is
demonstrated through the application of the NET-R&D-PS in
China’s 2030 Vision Plan, offering insights for scenario analysis,
attribute selection, and final portfolio outcomes in NET-R&D-PS.

The remaining parts of this paper are organized as follows: Section 2
reviews the related literature. Section 3 gives the preliminaries. Sec-
tion 4 proposes OPA-DR for NET-R&D-PS. Section 5 demonstrates the
proposed approach using the NET-R&D-PS of China 2030 Vision Plan.
Section 6 provides conclusions and future research directions.

2. Literature review

NET-R&D-PS refers to the process of determining the portfolio of
NET R&D projects of the nuclear system (reactors and associated post-
combustion processes) to promote the advancement and application
of NET [3,26]. NET-R&D-PS is a specialized application of the PPS
problem within the decision analysis domain. Existing PPS analysis
methods are primarily qualitative and quantitative [27]. Of these, quan-
titative analysis is particularly valued for its objectivity and accuracy,
with numerous successful instances highlighting its efficacy. This study
will concentrate on quantitative-based PPS [28]. Current quantitative
approaches are generally divided into two categories [12]. The first
involves evaluating individual projects and then assembling the optimal
portfolio. The second involves generating all possible portfolios from
projects and then assessing these to select the best option. The primary
distinction between these methods is the focus on decision units; the
first emphasizes individual project assessment, while the second centers
on portfolio evaluation.

In the first type, MADM technique is initially used to evaluate
each project comprehensively, followed by transforming the problem
into a 0-1 knapsack problem to identify the optimal portfolio [12].
Specifically, the performance or ranking obtained in the first stage
is integrated into the additive objective function in the second stage,
subject to resource constraints. The primary advantage of this type is
its ability to evaluate individual project performance across multiple
attributes, thus improving understanding of how each project impacts
the overall portfolio. Common MADM methods in this context include
AHP [29], ANP [30], DEMATEL [31], TOPSIS [16], PROMETHEE [32],
ELECTRE-TRI [33], MABAC [13], and MAUT [34]. Debnath et al.
[13] proposed a hybrid approach combining DEMATEL and MABAC
to manage the genetically modified agriculture investment portfolio.
They used DEMATEL to assign attribute weights and MABAC to in-
tegrate DMs’ preferences, resulting in portfolio ranking. Zhang et al.
[14] presented a fuzzy VIKOR multi-objective optimization model for
military weapon portfolio selection. This process involves three stages:
the first derives attribute weights using fuzzy semantic values, the
second applies VIKOR to obtain comparative scores over time, and
the final stage uses a multi-objective optimization model to select
the optimal portfolio. Wu et al. [15] determined attribute weights
through the interval type-2 fuzzy analytic hierarchy process and then
employed the non-dominated sorting genetic algorithm-II to select
the optimal distributed energy generation portfolio under budget con-
straints. Tavana et al. [17] developed a VIKOR-based mixed integer
linear programming approach for network security project portfolio se-
lection, considering project synergies, human resource capabilities, and
employee training opportunities. Additionally, some studies addressed
decision-making uncertainty by integrating grey system theory [20,35]
and fuzzy theory [21,32,36] to improve MADM input data.

In the second type, all feasible portfolios are generated by consid-
ering relevant constraints, followed by an evaluation to identify the
optimal one [12]. The main advantage of this approach is its ability
to address project interactions and offer deeper insights into portfolio
differences. In the first stage, feasible or Pareto-optimal portfolios
are generated using constraint-based methods that consider factors
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like project interactions, resource dependencies, and implementation
feasibility, without incorporating expert preferences. The second stage
involves MADM analysis to rank non-dominated portfolios or select
the best compromise portfolio. Among MADM methods, DEA is the
predominant technique for analyzing feasible portfolios in the second
stage [17,18], with a smaller subset utilizing the SMAA approach [19,
37]. Tavana et al. [17] proposed a fuzzy multidimensional multiple-
choice knapsack model to generate feasible portfolios and apply DEA
to filter a manageable set of implementable alternatives. Song et al.
[19] developed four heuristic algorithms based on SMAA for project
portfolio selection and scheduling in engineering management.

Existing research on PPS has gained attention across various fields,
but research specifically focused on NET-R&D-PS remains relatively
scarce. Current studies on PPS still overlook scenario uncertainty in
decision-making. Most existing research addresses uncertainty in deci-
sion data provided subjectively by experts, using grey system theory
and fuzzy theory. However, these studies fail to account for future
scenario uncertainty, a broader and more significant source of un-
certainty in portfolio selection [38]. Scenario uncertainty not only
complicates long-term performance estimation of projects or portfolios
but can also fundamentally alter the importance of attributes [34,39].
This is particularly critical in strategic decisions such as NET-R&D-PS.
For example, in scenarios involving future nuclear energy exports, the
economic attribute becomes more important than security, compared
to a scenario without exports. This shift in evaluation structure, driven
by scenario uncertainty, is more impactful than the range of fuzziness
in expert input data. Additionally, due to the safety classification
constraints in NET R&D projects, decision analysts often cannot access
precise evaluation data and must rely on expert opinions. This reliance
introduces subjectivity and potential biases into the decision-making
process. However, empirical evidence suggests that using ranking data
as model inputs results in more robust decision outcomes when han-
dling input data uncertainty [40]. DM only needs to specify “which
is better than which” without indicating the degree of dominance or
exact values [22]. Thus, using ranking data for NET-R&D-PS may offer
a promising approach, though current research has not explored this
aspect.

3. Preliminary
3.1. Ordinal priority approach

OPA is an effective MADM technique for MADM with incomplete
information [23]. Unlike conventional methods, OPA uses ordinal rank-
ings, discussed in Section 2, as inputs, allowing for the simultaneous
calculation of weights for experts, attributes, and alternatives through
a linear programming model [41]. It eliminates the need for data
normalization, expert opinion aggregation, and pre-determined deci-
sion weights [42]. Consequently, its straightforward data collection
process, ease of implementation, and dependable results have led to
its widespread application in areas such as supplier selection [28,43],
blockchain obstacle analysis [44], and performance evaluation [25,45].
However, OPA and its current extensions do not account for scenario
uncertainty when attribute rankings are given across different scenarios
with nominal probability distributions.

Given a set of experts I, attributes [J, and alternatives KX, DM
initially assigns the ranking 7, for expert i € I. Subsequently, each
expert i € T independently provides the ranking s;; for each attribute
j € J and the ranking r;;, for each alternative k € K under each
attribute j € J. Define the following sets:

X = {0 ) EIXTXKXK 1y =rj+ Ly € [K-1]},
X2 = {(i.j. k) €IxT XK : riy = K},
Y :={G,j,k)eIxJTxK}.

Based on the ordinal ranking data, OPA identifies the maximum
weight disparity among alternatives with consecutive rankings, while
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reflecting experts’ preferences within the normalized weight space, as
shown in Eq. (1) [23].

max z
w.z
stz S sy Wy, = wy) VG kD) € X
z 87 (W) (i, j, k) € X? o
I J K

22 wp=1
i=1 j=1 k=1
Wijke 20 Vi, j k)€Y

The variable z can be regarded the weight disparity scalar of OPA.
After solving Eq. (1) for z* and w*, the weights of experts, attributes,
and alternatives, denoted as W1, WJ, and WX, are then given by:
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Without loss of generality, map the alternative index k to the
ranking index r corresponding to their ranking position r;;, with R =
K, and define &€ := T x J x R. Wang [24] provides the equivalent
reformulation of the OPA model in Eq. (1), which can be interpreted
as deriving weights based on rank order centroid (ROC) weights for
alternatives (i.e., a specific utility function for ranked alternatives)
within a normalized decision space.

Lemma 1 (Wang [24]). The OPA model in Eq. (1) has the following
equivalent reformulation:

max z,
w,z
s.t. RuR9Cz < 18 Wijps Y(@i,j,r) € &,
I J R 3)
DI
i=1 j=1r=1
w,-j,ZO, V(i,j,r)e&
1 R 1
where uf0¢ = - (Eh=r ;) forany r € R.
The dual problem of Eq. (3) is shown in Eq. (4).
min A
Ay
.U 187 < 4 v(@i,j,r) €&
I J R @
¥ ¥ Raf0Cy, —1
i=1 j=1r=1
Vijr 20 V(i j,r)€E

For clarity in subsequent discussions, rewrite the OPA model in
Eq. (3) as:
max {z: f(z) < gw)}. 5)
Z,WEW
where [f(2)];;, = f;;(z) = Ruf%Cz and [gw)];;, = g;;,(w;;,) = t;5,;w
for all (i, j,r) € £ and

. IxJXK
w = {w,-jk eRY

ijr
I J R
: Z Z Z wjr = Lwy, >0,V j.r) € 5} .
i=1 j=1r=1
3.2. Problem statement
This study considers NET-R&D-PS where DM needs to choose the

optimal portfolio from a set of optional NET R&D portfolios H :=
{1,2,..., H}, indexed by h. Each portfolio consists of b projects chosen
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from a set of projects K := {1,2,...,K}, indexed by k. If portfolio h
contains project k, then x,, = I; otherwise, x,, = 0. Additionally, a
set of attributes J := {1,2,...,J}, indexed by j, and a set of experts
I :={1,2,...,1}, indexed by i, are assigned to evaluate the projects.
For input data, DM initially provides an importance ranking for each
expert i € I, denoted as #; € I. Then, each expert i € I ranks
each project k € K across each attribute j € J, yielding ranks
rijk €R = {1,2,..., R = K}. The attribute rankings are influenced by
potential future scenarios that NET R&D may encounter. Let § denotes
the uncertain attribute rankings. DM provides a finite set of scenarios
L :={1,2,...,L}, indexed by /, with corresponding attribute rankings
s; € J for each j € J and I € L, associated with nominal probabilities
p; = P[5 = 5,]. Notably, due to the highly specialized nature of the NET
R&D portfolio, the number of feasible portfolios is generally small (less
than 20) and is predetermined by experts.

4. Distributionally robust ordinal priority approach

The nominal distribution of scenario faced by NET R&D occurrences
is difficult to determine objectively and is typically estimated subjec-
tively using expert judgment, leading to considerable uncertainty [12].
This motivates to adopt the DRO modeling paradigm to extend OPA
(namely, distributionally robust OPA, OPA-DR) for addressing NET-
R&D-PS. Specifically, OPA-DR incorporates an ambiguity set, i.e., a
family of probability distributions with limited yet common distribu-
tional information derived from the nominal distribution, and evaluates
the decision outcome based on its worst-case expected performance
across any distribution within the ambiguity set. Let %(P,6) denote
the ambiguity set derived from the nominal distribution P with the
ambiguity set size 6. The unified framework for OPA-DR is given by:

max {z L f(2) <y 8@, 5)1. VP, € F(P.0).Y) € J} . ®)

Notably, Eq. (6) is an infinite-dimensional optimization problem,
since its ambiguity set contains infinitely possible realizations of proba-
bility distribution. Thus, for OPA-DR, the key to our success is designing
the ambiguity set based on the nominal distribution for the NET R&D
scenario and further determining the effective algorithm for solving Eq.

(6).
4.1. Ambiguity set construction

Building upon the nominal distribution for the NET R&D scenario,
we adopt a distance-based formulation to quantify distributional am-
biguity. Specifically, we employ the KL divergence to measure the
proximity between probability distributions. The underlying assump-
tion is that the worst-case distribution is absolutely continuous with
respect to the nominal one, sharing the same finite support set [46].
This setup provides the foundation for developing solving algorithms
and identifying the worst-case distribution, offering insights into man-
agerial decision-making. To begin with, we introduce the definition of
the KL divergence.

Definition 1. The KL divergence of P with respect to P in discrete
distribution with L scenarios is given by:

L
Dy (P,P) = ZP!¢KL <%> ) @
=1

where ¢y (t) =tlogt —7+ 1 and ¢ > 0.

It is easy to verify that ¢, (r) is a convex function on ¢ > 0, with
the conjugate function ¢}, (s) = ¢’ — 1. The KL divergence satisfies
Dy, (P,) > 0, with equality holding if and only if P = P. However, it
is important to note that the KL divergence is asymmetric and does not
satisfy the triangle inequality. To avoid pathological cases, following
standard assumptions in [46], we assume that:

¢k (0) < oo, 0'¢KL(%) =0, 0'¢KL(6) :li_ff(l)f'd’KL (é)
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=t lim t>0.

s—00

bk L(s)
-

We now consider how to determine the ambiguity set size 8 in the
KL divergence-based OPA-DR problem. Inspired by Blanchet et al. [47],
we choose the ambiguity set as the minimum KL ball containing at
least one distribution that yields the same optimal solution as the true
problem. Specifically, let (z*, w*) denote the optimal solution under the
true distribution P*. The set of distributions preserving this optimality
is then defined as:

PE*,w*) = {IP’ D (zF,w*) € arg mé%{z T f(2) < IESN]P,[g(w,S)]}}.
®

Since P* € P(z*,w*) by construction, we can determine the
ambiguity set size § by minimizing the KL divergence from P(z*,w*)
to P:

Dy, (P,P). ©)

0= min
PeP(z* w*)
However, since the true optimal solution (z*,w*) is not accessi-
ble, we replace it with the empirical optimal solution (z,wy ) when
the amount of sample is sufficient, which is obtained by solving the
following problem:

min {22 £(2) < By, @51} (10)

where P, represents the empirical distribution. Under mild conditions,
replacing (z*, w*) with (z},w?} ) provides a good approximation [48].

Remark 1. From Eq. (8), we notice that the determination of scenario
scale actually correlates with the number of attributes. Specifically,
when L < J, the KL divergence-based OPA-DR problem in Eq. (6) can
be considered a small scale problem. This follows from the fact that Eq.
(8) is equivalent to find a probability distribution set that satisfies the
KKT conditions leading to (z*,w™*). Following the KKT condition of
OPA provided by Wang [24], we have:

L

PZ*w*)e P = {IP’ :
=1

s = EgJN]va [5;1.Vje J} s an
where the left-hand side represents the constant sample average of
each attribute ranking. Thus, when L < J, the feasible distribution set
reduces to a singleton. In such small-scale problems, expert judgments
of scenario probabilities are assumed to be reliable and capable of
handling the limited scope, which implies that the statistics-based
approach can determine the ambiguity set size 6.

Note that a commonly used class of test statistics is defined by ¢ :

. 2L .
T; (B.P)= ——=—D,  ([®.P), (12)
KL ¢/lé (D KL
where P is the nominal distribution with L finite samples.
The following proposition provides the ambiguity set size for the
small-sample case constructed by the sample size L and the significance
level p.

Proposition 1. Given the nominal distribution with L scenarios, signifi-
cance level p, and attribute number J, when L < J, the ambiguity set size
0 of the KL divergence-based OPA-DR problem in Eq. (6) is given by:

@, (Dp
0= 5 13)

The following algorithm gives the procedure to determine the am-
biguity set size 6 for the KL divergence-based OPA-DR problem in Eq.
(6), which considers small-sample and normal cases.

Based on the above discussion, we obtain the KL divergence ambi-
guity set for the OPA-DR problem in Eq. (6):

L
Fr (B,0) = {PEE DDk (BB <0, py=1p 20,Vle£}. 14)
=1
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Algorithm 1 Specifing the ambiguity set size 6

1: Input: Nominal distribution P with L scenario, attribute number J,
and significance level p.

2: Output: Ambiguity set size 6.
3: Initialization: 6 < 0 and P :=@.
4. if L < J then
- e (Dp
5. Calculate through statistics-based approach 6 « T
6: else
7. LetP := {IP’ X pisy =By e [5,1.V) € J}.
8: Calculate through optimization-based approach 6 «
min Dy (P, ).
9: end if

10: return 6.

4.2. Algorithm design and closed-form analysis

In this section, we design an effective algorithm for solving the KL
divergence-based OPA-DR problem based on its structural properties.
To begin with, we transform Eq. (6) into the following equivalent form:

max z,
zZ,w
st Ruf9Cz < min B p [1,5w;]. VG.j.r) €E,
PieFx o)
I J R (15)
22 2w =1,
i=1 j=1r=1
wy, >0, V(i j.r) €E.

The following lemma presents the worst-case distribution for the KL
divergence-based OPA-DR problem in Eq. (15).

Lemma 2. For each j € [J, the worst-case distribution IP;.* of the KL
divergence-based OPA-DR problem in Eq. (15) takes the following form:

N s
D eXp <aj—*1>
J

p;,‘, =——, VIEL, (16)
Z[ 1 pl exp (%)
J
where a/’.* > 0 is the unique solution to the following KL divergence
constraint:

EONED
% %
Z/ 1pl exp < a; > 211;:1 13/ exp (%)

Eq. (17) can be efficiently computed by one-dimensional search
methods, such as bisection. The following theorem provides the closed-
form solution of the KL divergence-based OPA-DR problem in Eq. (15)
given the worst-case distribution.

log =0. a7

Theorem 1. Given the worst-case distributions P* for all j € .J, the closed-
form solution of the KL divergence-based OPA-DR problem in Eq. (15) is
given by:

-1

R RuROC

I J
z*:zz s S (18)

L *
i=1 j=1r=1 1 21=1 ijSj]

ROC ,
* R r *
ij jr - ’
1 Z/ 1”,1 L
Following the similar proof of Theorem 1, it can be verified that
the optimal weight disparity scalar for OPA-DR is smaller than that

of the stochastic OPA based on nominal distribution and larger than

v(@i,j,r) €E. 19
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that of the robust OPA proposed by [28,42]. Thus, it indicates that,
in the uncertain extension of OPA, robustness against parameter un-
certainty leads to a tendency for balance, reflecting the DMs’ aversion
to ambiguity rather than a focus on performance quality. By Lemma 2
and Theorem 1, the KL divergence-based OPA-DR problem in Eq. (15)
can be efficiently solved using the algorithm outlined below, without
relying on the reformulations commonly used to convert the problem
into a convex optimization, which becomes a burden as the problem
size grows. After applying Algorithm 2, the optimal weights w,?*jr are
mapped to w,?*jk based on project rankings. Finally, Eq. (2) is used
to compute the weights for experts, attributes, and projects. Portfolio
weights are aggregated according to project affiliation.

Algorithm 2 Solving the KL divergence-based OPA-DR problem

1: Input: Nominal distribution P with L scenario, ambiguity set size
0, expert ranking ¢, for all i € Z, attribute ranking s, for all j € J
and / € £, and project number R.

2: Output: Optimal weight w* and optimal weight disparity scalar z*.

3: Initialization: z* < 0, w* < 0, a;.* <0, and pj’.‘,
and/ € L.

4: for j € J do

5.  Solving the following equation through bisection method

L Py exp (%’) exp <
Zz 1B exp

al’f « arg Z log
brexp <%
J

ILI foralljeJ

% fi=1 yL 5 Sit
Z/:lpl exp a_/

6: forl/eL do

7: Calculate the worst-case probability p;.‘,
Z/f 1 Py exp </_*>
J
8: end for
9: end for
10: Calculate the optimal weight disparity scalar z* «
-1

i Z 2 uROC

i=1 j= lrIIZ/ 1Pj,j/
11: for (i, j,r) € € do

RuROC %
s

) . . *
12:  Calculate the optimal weight w7, « I
1 2l DS
13: end for

14: return w* and z*.

4.3. Theoretical sensitivity analysis

The sensitivity analysis of OPA-DR mainly consists of two parts: util-
ity function analysis and constraint perturbation analysis. Notably, the
latter mainly focuses on the presence of noise in the weight disparities
of the alternatives with consecutive rankings.

We begin with the utility function sensitivity analysis by deriving
the closed-form solution of the OPA-DR problem under the worst-
case distributions. Consider the following utility function sensitivity
problem:

max z,
zZ,weW

L
s.t. Rz <t (ij’.‘lsj,) Wijps V(i j,r) € E,
=1

where the utility function u® for ranked alternatives satisfying mono-
tonicity condition uf > uf+1 for all r = 1, ..., R — 1; and normalization

(20)

condition ¥’ =



S. Cui et al.

Let z*(6) and w*(5) denote the optimal solution of Eq. (20). The
following corollary gives the utility function sensitivity analysis results.

Corollary 1. For the utility function sensitivity problem in Eq. (20), we
have:

*(u®) = z*, (@3]
and
Rz* ; .
|w}, = w), @) = —5—— |uR0C —d|, VG, ee. (22)
lzl 11’,1 jt

Corollary 1 indicates that the optimal weight disparity scalar re-
mains constant for any utility function with monotonicity and normal-
ization properties. Also, the difference in optimal weights is determined
by the difference in utility functions.

Consider the following constraint perturbation sensitivity problem:

max z,

zw
L
* ROC ..
f (ij,sﬂ w, - RUFOCz > e, VG, j,r) €E,
=1
I

J R
138 S =

i=1 j=1r=1
w;; 20,

ijr =

(23)

v(@i,j,r) € E.

The perturbed parameters can be positive or negative, thus the
perturbation problem results from the original problem by tightening
or relaxing each inequality weight disparity constraints by ¢;;,, and
changing the righthand side of the equality normalization constraint by
e. Let z*(g,¢) and w* (¢, €) denote the optimal solution of Eq. (23). The
following corollary gives the constraint perturbation sensitivity analysis
results.

Corollary 2. For the constraint
Eq. (23), we have:

perturbation problem in

I J R
zx(e,e) =1 - Z z Z Eijr z*, (24)

i=1 j=1r=11; Z] lp_/] Jjl

and
RuROCz* (g, ¢)
w, (,6) = ———m8,
r t ZL *S
i Zu=1Pj 51
Corollary 2 shows that when reducing the normalization scale
(equality constraint) or tightening the weight disparity constraints
(inequality constraints), a smaller optimal weight disparity scalar is
obtained.

V(i,j,r) € E. (25)

4.4. Implementation steps

In this section, we outlines the implementation steps, notes, and
algorithmic time complexity of the KL divergence-based OPA-DR model
for NET-R&D-PS. The following procedure details the implementation
steps.

When applying the proposed model for NET-R&D-PS, it is important
to note that, after defining the decision elements, project rankings are
assigned independently by each expert, without group discussion, re-
flecting individual preferences. Attribute rankings for each scenario and
their associated probabilities are determined through group judgment
to ensure reliability. Expert rankings are provided by DM based on fac-
tors such as educational background, job grade, and work experience.
For large-scale scenarios, we recommend first clustering or reducing
the scenarios, followed by expert group discussions to determine occur-
rence probabilities. This is because, when faced with complex decision
analyses, increasing information load can scatter experts’ cognitive
resources (such as attention and memory), leading to imprecise judg-
ments or biases and resulting in systematic deviations. Additionally, the
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proposed model allows for tied rankings, where the weight difference
between tied alternatives is zero. In individual decision-making, the
proposed model can be formulated without parameters and constraints
related to multiple experts.

The time complexity analysis of the proposed model focuses on a
comprehensive evaluation of Algorithms 1 and 2. Specifically, for small-
scale problems (i.e., when L < J), the time complexity of Algorithms
1 is O(1); as the problem size increases, its time complexity becomes
O(LJ + J%). For Algorithm 2, its time complexity is O(IJR + JL).
Therefore, the overall time complexity of the proposed model exhibits a
piecewise characteristic: for small-scale problems, the overall complex-
ity is O JR + J L); for large-scale problems, the overall complexity is
O(max(J3, IJR,JL)). In general, the time complexity of the proposed
model is polynomial, effectively avoiding the intractability risks asso-
ciated with exponential or factorial complexities. This characteristic
makes it suitable for solving most practical engineering problems,
maintaining good applicability even in larger-scale scenarios.

Procedure 1 Implementation steps of the KL divergence-based OPA-DR
model for NET-R&D-PS
1: Step 1: Identify decision elements.
2: Determine the expert set 7, project set K, and portfolio set H
involved in the NET-R&D-PS decision-making process.
3: Identify the attribute set J according to the NET-R&D-PS
objectives.
: Identify the scenario set £ that NET R&D would face.
: Step 2: Obtain the input data.
: Assign important ranking #; for each expert i € T.
: Determine the nominal distribution P for the NET R&D scenario.
: for all scenario / € £ do
Assign important ranking s;, for each attribute j € J.
10: end for
11: for all expert k € K do
12:  Assign important ranking r;;, for each alternative k € K under
each attribute j € J.
13: end for
14: Step 3: Calculate the decision weights.
15: Determine the ambiguity set size based on Algorithm 1.
16: Solve the worst-case distribution and optimal weights based on
Algorithm 2.
17: Calculate the decision weights for experts, attributes, projects, and
portfolios.
18: Step 4: Result analysis and validation.
19: Determine the NET-R&D-PS decision based on the decision weights
and sensitivity analysis.

© © N QU A

5. Illustrative demonstration for China 2030 vision plan
5.1. Case description and scenario setting

This study selects NET-R&D-PS of China’s 2030 Vision Plan as a
case study. It focuses on nuclear fission technology, including related
reactors and fuel reprocessing processes. Reactors are classified as
burner, breeder, or burner-breeder based on their breeding ratio. Fuel
reprocessing techniques include once-through, separation and purifi-
cation, and partial removal of fission products. This study identifies
18 pioneering NET R&D projects, covering five nuclear system types
and nine practical applications, as detailed in Table 2. The compo-
sition of the alternative portfolio, comprising five optional projects,
is presented in Table 1. K1-K4 are classified as small modular and
compact reactors, typically designed for propulsion, space power, and
isotope production. Project K5 is identified as a combustion reactor
with separation—purification, reflecting its reliance on fuel burning
coupled with reprocessing. K6-K7 belong to high-temperature gas-
cooled reactors, which are well suited for hydrogen production and
process heat applications. K8-K11 correspond to fast breeder reactors,



S. Cui et al.

Energy 337 (2025) 138512

Table 1
Alternative portfolio and project composition.
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
K1 - - - v 4 v v - - - - -
K2 - - - - - v - v - _ _ _
K3 - - - v - - - - v - - v
K4 v v v - - _ - - v v _
K5 - - - - - - v v - — - —
K6 - - - - - - - - - - v -
K7 - - - - - v - -
K8 - - - - - - - - v - -
K9 v v - v - v - - - - —
K10 - - v - - v - - - v v -
K11 - - - - - - v v - - — —
K12 - - - - - _ - v - v _ _
K13 - v - - - - v - - - - -
K14 - - - - - - — v — v — _
K15 v v - v v 4 - - v - - -
K16 v/ - v - - - - - v - v v
K17 v v v v v - - - v - v v
K18 - - v - - v - - - - - v
Table 2
NET R&D project and practical application.
Project type Project NET application
D
Electricity Hydrogen Process Marine Integrated  Integrated Spacecraft  Isotope Military
generation  production  heat propulsion  island remote inland  power production  materiel
utilization utilization production
K1 v - - - v v - v -
Combustion & K2 - - - v - - v _ _
single pass K3 - - - v v v - -
K4 - - - v - - v v -
Combustion & K5 Y - - - / - - - -
separation—-purification K6 - v / - - - - - -
K7 v v - - = - _ -
K8 - - - - - - — v/
Breeding & K9 - - - - - - - - 4
separation—purification K10 - - - - - - - - v/
K11 v - - - - - - - -
Combustion-breeding & K12 - v v - - - - - -
single pass K13 v - - - v v — _ _
Combustion-breeding & K14 v - v - - - - - -
separation—purification K15 v v 4 - - - - - -
Combustion-breeding & K16 v v v - v v - - -
partial neutron K17 v v v - v v - - -
poison removal K18 v v v - v v - - -

characterized by their breeding capability and utilization in both power
generation and fissile material production. K12-K15 represent hybrid
combustion-breeding reactors, which integrate the features of both
combustion and breeding to support multiple energy outputs. Finally,
K16-K18 are classified as advanced molten salt reactors, featuring
online fuel circulation and partial neutron poison removal.

This study evaluates potential NET R&D scenarios for 2030 based
on two key factors: the potential for exportability of NET and the po-
tential for disruptive breakthroughs in other clean energy technologies
(OCET). Given China’s global nuclear strategy, outlined by the National
Energy Administration in 2013 and later adopted as a national policy,
China is actively promoting NET in international markets [3,49]. Be-
yond NET, OCET may serve as substitutes, making it vital to evaluate
their potential for disruptive breakthroughs when developing NET R&D
strategies. The following are the four identified scenarios.

» Scenario 1 (S1): No export of NET, with no breakthroughs in
OCET. Domestic NET R&D should prioritize addressing national
energy demands and achieving substantial sustainability improve-
ments. Given its relative maturity and contribution to meeting
non-proliferation objectives, NET will emerge as a more reliable
option compared to OCET, considering their intermittency and
economic limitations. Thus, sustainability becomes crucial in NET
R&D.

* Scenario 2 (S2): No export of NET, with breakthroughs in OCET.
In this case, China must reassess its NET R&D path. With the
rise of OCET, NET must increasingly focus on cost-effectiveness to
remain competitive in the energy market. This requires reducing
costs, enhancing R&D efficiency, and continuously optimizing
operational and maintenance models.

Scenario 3 (S3): Export of NET, with no breakthroughs in OCET.
The export of China’s NET has gained significant attention but
raises concerns about nuclear proliferation. Therefore, China must
ensure that NET exports do not contribute to misuse or abuse,
taking sufficient measures to prevent proliferation. Additionally,
without breakthroughs in OCET, issues of intermittency and eco-
nomic viability remain. Given the high costs associated with nu-
clear projects, collaboration with international partners on cost-
effective NET is essential to ensure long-term stability and mutual
economic and environmental benefits.

Scenario 4 (S4): Export of NET, with breakthroughs in OCET. In
this context, NET faces competitive pressures from OCET, making
economic efficiency a priority in China’s NET R&D. Cost reduction
and efficiency improvements are key to maintaining competitive-
ness in the clean energy market. While economic efficiency will
be a primary focus, safety and sustainability will remain critical,
although they may become secondary considerations in the face
of economic competition.
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5.2. Assessment attribute

This study selects six attributes for project evaluation in NET-R&D-
PS, primarily based on GIF R&D Outlook for Generation IV Nuclear
Energy Systems [50]. These attributes include sustainability, economic
viability, safety, proliferation resistance, technological compatibility,
and feasibility of implementation.

Sustainability (A1) refers to the long-term development of the NET
industry through improved nuclear fuel efficiency, advanced reactor
and fuel cycle technologies, and better waste management and disposal
methods [51]. Considering sustainability in the NET R&D portfolio
helps reduce dependency on uranium resources, minimize environmen-
tal impacts during nuclear energy production, and decrease radioactive
waste volume and toxicity, thereby extending the environmental im-
pact timeline. In the questionnaire for expert evaluation, the scope of
this attribute is defined to include: the extent to which an alternative
contributes to higher fuel utilization and reduced resource consump-
tion; the technological maturity and feasibility of advanced reactor
or fuel cycle deployment; and the effectiveness of radioactive waste
treatment, storage, and final disposal.

Economic viability (A2) focuses on reducing the lifecycle costs of
NET systems through technological innovation and management opti-
mization, addressing challenges such as high initial investments, long
construction periods, and substantial policy and market risks during
implementation [52]. Improvements in uranium utilization, modular
reactor designs, fixed-price contracts, and international cooperation
enhance NET competitiveness and adaptability. For expert evaluation,
this attribute is framed in terms of: the ability of an alternative to re-
duce both capital and operational expenditures; its potential to shorten
construction schedules and improve project delivery efficiency; and its
competitiveness relative to other available energy technologies.

Safety (A3) ensures the secure and reliable operation of nuclear
power plants, enhanced through technological innovation and design
improvements [52]. It focuses on three main areas: reliable reactivity
control, effective residual heat removal, and robust containment, form-
ing a comprehensive safety framework. Safety is a critical evaluation
criterion for NET R&D portfolios due to its direct impact on operational
safety, public health, and environmental protection. The evaluation
scope for this attribute covers: the capability of an alternative to
maintain stable and controllable reactor operations under normal and
abnormal conditions; the adequacy and resilience of heat removal
mechanisms to prevent core damage; the integrity and reliability of
containment systems against internal failures or external hazards; and
the overall effectiveness of safety design features in mitigating accident
risks.

Proliferation resistance (A4) ensures that NET and materials are
used exclusively for peaceful purposes, preventing their misuse in
nuclear weapons production or other non-peaceful activities [53]. This
involves implementing design, operational, and management innova-
tions to reduce the risk of illegal transfer or theft of nuclear materials
while ensuring the safe, reliable, and effective use of NET. Proliferation
resistance is an essential evaluation criterion for NET R&D portfolio
selection due to NET’s dual potential for both economic and social
development, as well as the risk of misuse that could jeopardize human
security. In the questionnaire, this attribute is assessed in terms of: the
effectiveness of material accounting and control measures to prevent
unauthorized access; the robustness of physical protection and moni-
toring systems against diversion or theft; the extent to which fuel cycle
design minimizes the attractiveness of materials for weaponization; and
the adequacy of institutional and regulatory frameworks that reinforce
non-proliferation objectives.

Technical compatibility (A5) highlights the importance of shared
technological features and processes across various NET R&D projects
[52]. This is achieved by evaluating similarities in key areas such as
reactor technology, materials, and reprocessing processes. High tech-
nical compatibility facilitates technology transfer, supports sustained
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platform development and upgrading, and lowers barriers to future
technological transitions. It also enhances the flexibility of NET systems
and enables integration with existing infrastructures, thereby reducing
the need for new facilities as well as initial construction costs and
operational risks. Experts are asked to consider this attribute with
reference to: the extent of similarity in fundamental reactor designs
and system architectures; the degree of material and component stan-
dardization across projects; the ease of integrating reprocessing and
fuel cycle processes into existing infrastructures; and the potential
of technical commonality to facilitate future technology transfer and
platform upgrading.

Implemental feasibility (A6) assesses the viability of a NET proposal
from theoretical research to practical application [26]. This assessment
ensures that selected solutions are scientifically, technologically, eco-
nomically, and socially viable. The primary goal is to identify and
select NET proposals with strong implementation prospects based on
solid research, which should address critical development challenges,
demonstrate smooth industrial applicability, and align with national
strategic objectives. The scope of evaluation for this attribute is artic-
ulated through: the maturity of the underlying scientific research and
the credibility of supporting evidence; the readiness of technological
pathways for scale-up and demonstration; the feasibility of integration
into existing industrial infrastructures and supply chains; and the align-
ment of the proposal with broader socio-economic needs and national
strategic priorities.

5.3. Data source

This study involves five nuclear energy experts who collaborate
in NET-R&D-PS. The experts were selected based on their significant
contributions to both research and management in China’s advanced
nuclear energy technology system, demonstrating deep domain knowl-
edge and practical experience. Their relative importance is ranked as
E5 > E3 > E2 > E4 > El. The probabilities for the four possible NET
R&D scenarios in China by 2030, along with the corresponding attribute
rankings under each scenario, were determined through a structured
expert panel discussion. During this discussion, experts jointly assessed
the likelihood of each scenario, considering both quantitative data and
qualitative insights, and reached a consensus on the normalized prob-
abilities shown in Table 3. Subsequently, each expert independently
ranked the NET R&D projects with respect to multiple attributes, as
summarized in Table B.1. Notably, the number of scenarios (L = 4) is
fewer than the number of evaluation attributes (J = 6), which is con-
sidered a small-sample scenario. As discussed in Section 4.2, judgments
from expert discussion are relatively reliable in such cases. Therefore,
a statistics-based approach is used to determine the ambiguity set size,
with a commonly applied significance level of p = 0.95.

5.4. Result analysis

This study applies Algorithms 1 and 2 to solve the OPA-DR problem
in this case study, which involves 5 experts, 6 attributes, 18 projects,
and 4 scenarios. In terms of problem size, it comprises a total of 571
variables, including 6 variables a, 24 worst-case probability variables
pji» 540 weight variables w;;,, and 1 weight disparity scalar z. The
problem is defined by 547 equations: 6 KL-divergence equations for
a, 1 equation for the weight disparity scalar, and 540 equations for
the weights w;;,. As indicated by Algorithm 2, the procedure runs in
polynomial time and can be solved efficiently, typically in less than
one second on a standard computer for this case study. Table 4 shows
the resulting worst-case distributions for each attribute. The results
highlight distinct worst-case distributions: S1 dominates Al, A3, and
A6; S2 dominates A2 and A5; and S3 dominates A4.

Fig. 1 shows the weights for each expert, attribute, project, and
portfolio. For expert weights, E5 has the highest at 0.4380, followed by
E3 at 0.2190, E2 at 0.1460, E4 at 0.1095, and E1 at 0.0876. Regarding
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Table 3
Nominal distribution of potential scenarios and corresponding expected attribute rankings.
Probability Al A2 A3 A4 A5 A6
S1 0.2972 1 4 3 6 5 2
S2 0.3243 4 1 5 6 2 3
S3 0.2162 6 5 3 1 4 2
S4 0.1621 5 3 6 2 4 1
Expected ranking - 3.7021 3.0804 4.1343 4.2694 3.6478 2.1618
Table 4
Worst-case distribution and corresponding expected attribute rankings.
S1 S2 S4 Worst-case expected ranking
Al 0.5202 0.2676 0.1081 0.1041 2.7597
A2 0.2364 0.5525 0.1334 0.0776 2.6311
A3 0.4318 0.1925 0.3142 0.0615 3.5695
A4 0.1836 0.2004 0.3833 0.2327 3.1526
A5 0.1546 0.5530 0.1671 0.1253 3.0487
A6 0.2963 0.1586 0.2156 0.3295 1.8292
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Fig. 1. Calculation results.

attribute weights, A6 has the highest weight of 0.2469, making it the
most critical factor. Despite strong performance in other areas, substan-
tial execution challenges may hinder successful implementation, thus
playing a key role in NET R&D project evaluation. A2 ranks second
with a weight of 0.1716. Given the significant financial investment in
NET R&D projects, their economic feasibility directly impacts funding
and long-term development. Excessive costs or insufficient returns can
considerably affect project progress. Al ranks third with a weight of
0.1636. This attribute is vital for NET R&D, as it involves long-term
nuclear fuel supply and waste disposal, making it a critical factor.
A5 holds the fourth position with a weight of 0.1481. Evaluating the
compatibility of NET with existing systems and infrastructure is crucial,
as incompatibility may result in high costs or failure to integrate with
the current energy system. A4 ranks fifth with a weight of 0.1432, and
A3 is sixth with a weight of 0.1265.

Regarding project weights, the top eight NET R&D projects are
ranked as follows: K17, K18, K16, K15, K11, K14, K4, and K5. Among

these projects, K14 and K15 focus on combustion-breeding &
separation—purification, and K16, K17, and K18 are for combustion—
breeding & partial neutron poison removal. K4 is the optimal for
combustion & single pass type, K5 is for combustion & separation—
purification, and K11 is for breeding & separation—purification. The
results indicate that combustion-breeding approaches generally out-
perform pure combustion or breeding in NET-R&D-PS. As for portfo-
lio weights, the top four NET R&D portfolios are H3 (0.3613), H12
(0.3597), H1 (0.3472), and H9 (0.3391). H3, made up of K4, K10, K16,
K17, and K18, covers projects in combustion & single pass, breeding
& separation—purification, and combustion-breeding & partial neutron
poison removal. Its applications span all nine use cases, making it a
well-balanced NET R&D portfolio. It performs particularly well in Al,
A2, and A3, while its performance in A5 is relatively weaker compared
to other portfolios. H12, consisting of K3, K7, K16, K17, and K18,
is also a relatively balanced portfolio but lacks coverage in isotope
production and military material manufacturing. Compared to H3, it
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Fig. 2. Worst-case distribution under different significant levels.
Table 5
Worst-case expected attribute rankings of model validation.
P Al A2 A3 A4 A5 A6
0.75 2.8655 2.7356 3.6292 3.2783 3.1157 1.8664
0.85 2.8110 2.6818 3.5983 3.2135 3.0812 1.8472
0.90 2.7850 2.6561 3.5837 3.1826 3.0647 1.8381
0.95 2.7597 2.6311 3.5695 3.1526 3.0487 1.8292
0.99 2.7400 2.6116 3.5585 3.1291 3.0362 1.8222

performs worse in Al, A2, A3, and A6, but outperforms in A4 and
A5. H1, composed of K4, K9, K15, K16, and K17, shares the same
balanced structure as H3. It particularly excels in A6, demonstrating
a strong capacity in addressing execution-related challenges. H9, made
up of K3, K5, K15, K16, and K17, is structurally similar to H12 and
also lacks applications in isotope and military material domains. While
it underperforms in Al, A3, and A6 relative to H3, H12, and H1, it
shows a distinct advantage in A5, highlighting its strength in system
compatibility.

5.5. Model validation

5.5.1. Sensitivity analysis of significance level

This section analyzes the sensitivity of OPA-DR to changes in the
significance level, which directly affects the size of the ambiguity set.
Experiments are performed for significance levels of 0.85, 0.90, 0.925,
0.95, and 0.99, respectively. Fig. 2 and Table 5 display the worst-case
distributions and their associated expected attribute rankings.

Fig. 2 illustrates that, for the worst-case distribution, as the signif-
icance level increases, the probability of the optimal scenario for each
attribute also rises. Moreover, Table 5 shows that with an increasing
significance level, the worst-case expected rankings for all attributes
shift toward lower values. The optimal weight disparity scalar of OPA-
DR decreases consistently as the significance level increases, in line
with the closed-form solution from Theorem 1. Regarding the results
for projects and portfolios, the final rankings remain consistent across
different significance levels. This observation highlights the numerical
stability of OPA-DR with respect to the significance level, enabling DMs
to choose appropriate levels based on their risk preferences without
concern for significant changes in the optimal solution.

5.5.2. Perturbation analysis of project rankings
This section conducts a perturbation analysis of OPA-DR in relation
to project rankings, assessing the impact of ranking deviations on

10

the final outcomes, which demonstrates the reliability of OPA-DR in
the face of uncertainties in expert judgments. Specifically, perturbed
samples are generated by adding Gaussian noise to original expert-
provided project rankings, resulting in normal distributions centered
around each ranking with standard deviations of 1/4, 1/3, and 5/12.
This setting follows the empirical rule that approximately 99.7% of data
in a normal distribution falls within three standard deviations of the
mean, and thus these standard deviations yields perturbation radii o of
0.75, 1, and 1.25, respectively. The following stopping condition are
defined to assess the perturbation outcomes:

m m T * *\T _
||(argrkneal)c(pkyl,...,argrknEaI)C(pk’R) — ki, kR) =0,
T
ll(max p’,. ... max pi’ ) I 2 d,

where pj is the probability that alternative k is assigned to rank
r at iteration m, k' denotes the rth ranked alternative in the refer-
ence solution, and d = 2.1213 corresponds to the #, norm of the
constant vector (1/2,...,1/2) in 18 dimensions. The first condition
ensures convergence of the final ranking to the original ranking after a
specified number of iterations. The second condition requires that the
convergence probability meets a minimum threshold. A maximum of
2000 iterations is allowed for convergence, with at least 100 iterations
required for statistical reliability.

The simulation results show that for radii ¢ = 0.75 and ¢ = 1, OPA-
DR converges within 100 and 883 iterations, respectively, while for
radius ¢ = 1.25, simulation fails to meet the stopping condition and
reaches the maximum iteration limit of 2000. This failure primarily
occurs because the last three projects do not consistently converge to
the original rankings, though it does not affect the final outcomes.

Fig. 3 shows ranking results and associated probabilities for differ-
ent perturbation levels. The bar plot reveals that as the radius increases,
the maximum probability of each project achieving optimal decreases.
For o = 0.75, most alternatives show high confidence with probabilities
near 1, whereas for ¢ = 1.25, many probabilities fall below 0.6,
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Fig. 3. Ranking results and associated probabilities under different perturbation levels.

indicating a marked decline in prediction certainty. The case for ¢ = 1
lies between the above two cases. As for project rankings, the cases
o = 0.75 and ¢ = 1 present the identical project rankings with the
original rankings, while ¢ = 1.25 shows some minor fluctuations in the
rankings. Among all 18 projects, the top 15 rankings remain consistent
across difference radii. Specifically, for ¢ = 1.25, K1 drops from 15th
to 16th, K6 rises from 16th to 15th, and K8 moves from 17th to 18th,
with most changes confined to adjacent positions. This is due to the fact
that the projects with reversed rankings have nearly identical original
weights and relatively low rankings.

Fig. 4 illustrates the distributions of portfolio weights for different
perturbation radii, which display Gaussian-like patterns consistent with
the sampling strategy. It also indicates that as the perturbation radius
increases, weight variability intensifies, reflecting reduced consensus
across the simulated rankings. Overall, based on the above findings,
OPA-DR demonstrates considerable stability to project ranking pertur-
bations, with the ranking structure remaining stable even under higher
noise, although the convergence speed and confidence may decline in
uncertain decision-making contexts.

5.5.3. Comparison analysis

This section conducts comparison analysis of OPA-DR to validate
its rationality, with the benchmark methods of robust OPA (OPA-
R), stochastic OPA (OPA-S) based on nominal distribution, and OPA
for each scenario. Specifically, the following benchmark models are
constructed:

» OPA-R considers the case where the true attribute rankings lie
within the support sets constructed from the four scenarios and
optimizes against the worst-case ranking [28,41]:

max

. p,ROC sl .
z . Ru z <t;min{s’ }w;;. V@i, j,r)€E 3.
z,wEW{ r 'Iet{ Yy VG Jor) }

OPA-S treats attribute rankings as random variables following
the nominal distribution P in Table 3 and optimizes based on
expected rankings:

max

max {21 Rz < sl 1wy, V0 € € )

J

OPA is applied to each scenario, treating them as determination
problems. For each scenario / € £, the formulation is:

. ROC P
z,%g'v {z D Ru Sz < tysp w3, L) € é’}.
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Fig. 5 illustrates the weight results for attributes, alternatives, and
portfolios, highlighting differing attitudes toward uncertainty across
frameworks. In general, the results of OPA-DR, OPA-R, and OPA-S
fall within the envelope defined by the OPA results of four scenarios.
For attributes, OPA assigns the highest weight to the top-ranked at-
tribute in each scenario, which is optimal for a deterministic future
but lacks robustness against scenario uncertainty. In contrast, OPA-R
assigns equal weights to the attributes ranked first in each scenario,
namely Al, A2, A4, and A6, ensuring robustness but introducing over-
conservatism. OPA-S, however, aligns the attribute weight results with
the expected rankings based on the nominal distribution. OPA-DR, in
turn, provides attribute weight results that strike a balance between
OPA-S and OPA-R, avoiding both excessive conservatism and overre-
liance on the nominal distribution. Regarding projects and portfolios,
the relationships among OPA-DR, OPA-R, and OPA-S are similar to that
of the attribute results and fall within the range defined by the OPA
results of the four scenarios. However, the OPA results for each scenario
show variation, especially for K17 and K18, which exhibit significant
shifts in their weight distributions, indicating that the original OPA
model is highly sensitive to scenario-specific inputs.

We further calculate the Pearson correlation coefficients between
the outcomes of OPA-DR and the other benchmarks, as illustrated in
Fig. 6. For attribute weights, the OPA results across the four scenarios
vary significantly and show negative correlations, with the overall
correlation typically below 0.5. Many negative correlations appear
in these scenarios, though the correlations between OPA-DR, OPA-
S, and OPA (S4) are relatively high. Regarding project and portfolio
weights, OPA-DR exhibits strong correlations with OPA-S (0.9996) and
OPA-R (0.9883), outperforming OPA-R and OPA-S in its correlation
with other scenarios, and significantly exceeding the correlation of
any individual scenario. Overall, OPA-DR provides more stable and
balanced weight assignments than benchmark methods, combining the
strengths of stochastic and robust approaches to mitigate distributional
uncertainty and worst-case scenarios.

6. Conclusion
NET has emerged as a vital means to achieve a clean, efficient,

and sustainable global energy supply, with the optimal NET-R&D-PS
playing a crucial role in ensuring technological innovation, enhanced
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safety performance, clean sustainability, and cost-effectiveness maxi-
mization. However, current research on NET-R&D-PS, particularly in
the nuclear energy sector, is limited and does not adequately address
the scenario uncertainties faced by NET R&D. To address this, this study
introduces OPA-DR to tackle the NET-R&D-PS problem under scenario
uncertainty, which significantly affects attribute rankings. Specifically,
OPA-DR enhances the traditional OPA by replacing deterministic at-
tribute rankings with worst-case expected rankings under uncertainty.
Additionally, this study proposes an ambiguity set based on KL diver-
gence for OPA-DR to characterize the possible family of distributions
within a given nominal distribution for scenarios. In designing the
ambiguity set size, it is found that the number of attributes serves as
the basis for distinguishing small-scale scenarios (where the number
of scenarios is less than the number of attributes). Based on this,
we design small-scale scenario ambiguity sets using a statistics-based
approach and large-scale scenario ambiguity sets using an optimization-
based approach. Subsequently, based on the structural properties of
OPA, we propose a solution algorithm that requires solving a one-
dimensional equation and analytically calculating the optimal weight
using the closed-form solution, making it a polynomial-time algorithm
capable of efficiently solving large-scale problems. Finally, this study
analyzes the sensitivity of OPA-DR under different alternative util-
ity functions and weight difference constraint perturbations from a
theoretical perspective.

This study provides an illustrative demonstration of NET-R&D-PS
for China 2030 Vision Plan. The case study identifies eighteen R&D
projects and twelve portfolios across five categories of nuclear energy
systems, spanning nine applications. Evaluation attributes for the iden-
tified NET R&D portfolios include sustainability, economic viability,
safety, proliferation resistance, technical compatibility, and implemen-
tation feasibility. Considering exportability of NET and breakthrough
potential of OCET, four potential NET R&D scenarios for 2030 and
their respective probability distributions are determined, along with the
attribute importance ranking for each scenario. The results show the
worst-case distribution of attributes within the proposed ambiguity set
for OPA-DR, which would provide DMs with valuable insights into NET
R&D prospects. Additionally, the NET-R&D-PS results identify H3 as the
optimal portfolio. H3 demonstrates a balanced and consistently strong
performance, covering breeding, separation—purification, combustion,
and partial neutron poison removal, with applications spanning all
nine use cases. This study validates the model by testing OPA-DR
with varying significance levels and project ranking parameters, and
compares it with robust OPA and stochastic OPA based on nominal
distribution. The results confirm the robustness and stability of the
KL divergence-based OPA-DR approach, validating its effectiveness in
addressing the MADM-based NET-R&D-PS.

It is important to note that the results and conclusions are derived
within a specific context. Therefore, further testing across various
NET-R&D-PS scenarios is necessary to confirm their effectiveness. Fur-
thermore, the proposed approach is adaptable to other energy sectors
(e.g., renewable energy R&D and hydrogen storage technologies) by fol-
lowing the implementation steps outlined in Section 4.4 and adhering
to the provided several notes. Moreover, this study assumes attribute
independence, but future research could explore scenarios that in-
corporate attribute interactions, which are more typical in real-world
contexts. This could be achieved using the method proposed by Wang
[42], which models correlations between indicators in the ranking
parameters using an exponential form. In this case, the theoretical proof
derived in this study remains consistent. Additionally, while this study
proposes different approaches to determine the ambiguity set size to
minimize the impact of biased or inconsistent expert opinions, it is
recognized that such systematic biases may still persist. To address this,
we propose two feasible modeling approaches to improve the proposed
approach in the future. The first approach considers a globalized DRO
formulation, which ensures no constraint violation for any distribution
within a predefined ambiguity set, while allowing potential constraint
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violations for distributions outside the ambiguity set. This method can
smoothly extend to the proposed approach without adding computa-
tional cost, handling cases where the true distribution lies outside the
ambiguity set constructed by nominal distribution. For further details
on globalized DRO modeling, we refer the reader to Liu et al. [54]. The
second approach applies Bayesian DRO modeling, treating the nominal
distribution provided by experts as the prior and updating the posterior
distribution to mitigate bias. For more information on Bayesian DRO
modeling, we refer the reader to Shapiro et al. [48].
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Appendix A. Technical proofs

Proof of Proposition 1. Assume the given nominal distribution P is a
random sample independently and identically drawn from an unknown
distribution PP. Based on this, we can conduct the following hypothesis
test:

is drawn from P;

* Hy: P
P is not drawn from P.

. Hp:

Given a threshold p, if the test does not reject Hy,, then P passes the
test and can be regarded as the distribution constructing the ambiguity
set. Thus, the ambiguity set of distributions obtained from the test is:

F,p) = {IP‘ : TdeL(lf”,IP’) sp},

2L A
: mD(ﬁ“(P,P) < ﬂ} R

(A1)

Dy, BP) <6 = T

Using the asymptotic distribution of TLKL(I@’, P) (which converges
to a chi-squared distribution with L — 1 degrees of freedom), the size
parameter 0 of the KL divergence ambiguity set can be determined at
a significance level 6§ = IP’(T(;KL(I@’, P) > p|H0). Let p = 12—1,1—5’ then
the ambiguity set corresponds to the 1 -5 confidence region of the true
distribution P. Furthermore, noting that > and P are interchangeable,
the convergence result still holds. Therefore, we have the results in

Proposition 1. []
Proof of Lemma 2. For any (i,j,r) € € and fixed w; jrs the expert
ranking #; is a deterministic parameter, leading to:

min E§j~f",- [t;s;w;j] < tw;;,  min Es,w[P’, [s;]. (A.2)

PeFxy ®,0) P,eFxy >,0)
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Therefore, the worst-case expectation of attribute ranking under the KL-
divergence ambiguity set can be determined by solving the following
convex optimization problem:

L
min Y s

3 1S
P;eRL

I=1

L
Pji
s.t. p;log <T> <6, (A.3)
E{ /! B
L
ZP/I =1
I=1

The Lagrangian of Eq. (A.3) is given by:
L L P L
G(a;, pj,pj) = zpjlsjl +a; <‘9 - zpjl log (#)) + 5 (1 - ZPﬂ) ,
! I=1
Pji
—a0+ﬂj+2pﬂ< —a 1og<pi> —ﬂj>.
I

A4

where «; > 0 and §; are the dual variables.

Note that the KKT conditions are both necessary and sufficient for
optimality in convex optimization problems. By taking the derivative
with respect to p;, and setting it to zero, for all / € £, we get:

oC(a;, B:,p;
Olay bp) o

pjl>>
=0es, 1+1o —p, =0,
opj i < ¢ < b /

which yields:

. 81— B;
p/-,:p,exp< ! ! —l>. (A.5)
]

Substituting Eq. (A.6) into the normalization condition gives:

L

sy—p B+ a; S
Zﬁ,exp(u—g:l:exp(—j j) ﬁ,exp<l>=1.
=1 J a; a;

Define Z(a;) = Z,L=1 Py exp <a4>, yielding:
B; = —a;log Z(a)) — a;. (A.6)

Ve

Plugging Eq. (A.6) into Eq. (A.5) provides the form of worst-case
distribution:

1 St
= —p L), viecr. A7
Pji Z(aj)pl exp < 2 ) (A7)

According to the KKT condition, the optimal value of «; can be
obtained by solving the following equation:

o Sjl St
* p—
aj =arg E Z(@,) log =0. (A.8)

% |1=1 Z(a))

Note that the function on the left-hand side of Eq. (A.8) is strictly
decreasing and continuous in « ensuring the existence and uniqueness
of the optimal solution. Subsututlng a into Eq. (A.7) gives the worst-
case distribution IP’;* that satisfies the KKT condition, which gives the
results in Lemma 2. []

Proof of Theorem 1. Given the worst-case distribution ]P’j’.‘, we have
OPA-DR in the following form:

max z,
z,w

ROC ,
s.t. Ru, (Zp/l 1,> Wijrs
R
2wy = 1.
1

r=
0, Y(i,j,r) € E.

V(@i,j,r) €E,
(A.9)

M~
M~

E'l
|VE
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which is a typical linear programming problem. Thus, employing the
Lagrange multiplier method, we have:

5..)

j=1r=1

R L
* ROC
Zﬁfﬁ <ri <Z szsjl> w;;, — Ru, z>.
1r=1 =1

(A.10)

1M~

Q(zwaﬂ)—z+a(

™M~

>

i=1j

Following Wang [24], we always have:

6z w,a, ) _ 96z, w, a, p) 0, Vijnee (A11)
Ja ﬂ,-j, ? T ?
which yields:
o o B ineH (A12)
w, = s L,j,r) €, .
T EILZ| P;,Sjl
and
I J K
Z Y wh =1 (A13)
i=1 j=1

r

Substituting Eq. (A.12) into Eq. (A.13) yields the closed-form solution
of OPA-DR shown in Theorem 1. [J

Proof of Corollary 1.
have:

/i

i=1 j=1r=1 t, Z/ lpjls./]

J
= z*’
=1j=11; ZI 11’,1‘11

where the second equality follows from Zf: , u® = 1. It follows that, for
any (i, j,r) € &,

By the closed-form solution in Theorem 1, we

b‘

(A14)

5 Ru ROC z* Ruéz*(ué)
lwf;, — w}, @) =
jr
li 21 11’,1 i Zl 11’,1 jt
*
-__R& |ufoc 2] (A.15)

L %
t; Z[:]I’jlsjl

which gives the results in Corollary 1. [J

Proof of Corollary 2. Let (4*,y*) be optimal for the dual problem

of Eq. (23):
min A,
Ay
L
s.t ti (Zp;[‘g‘/l)yl‘/rsﬂ’ V(i,j,r)eé',
=t (A.16)
I J R |
>33 (24 )t
i=1 j=1r=1 \h=r
?/ierO, v(@i,j,r) € €.

Suppose that (z,w) is feasible for the perturbation problem in
Eq. (23). Then, we have, by strong duality,
RuROC z>

L
2z +ZZ r(ti(;p;sj,>w”—

i=1 j=1
1
w;jp), (A17)

M=
=
S

~.
<
Il

M~
M=

+A%(1 - Z
J
)
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<
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*
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N
+
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Table B.1
Project ranking under each attribute given by experts.
Expert ID Project ID Al A2 A3 A4 A5 A6 Expert ID Project ID Al A2 A3 A4 A5 A6
El P1 18 17 18 4 12 3 E2 P1 16 18 15 5 11 3
P2 16 15 17 8 17 7 P2 17 14 18 8 17 9
P3 15 14 7 5 15 10 P3 15 15 7 1 18 4
P4 17 18 11 2 18 8 P4 18 17 13 6 6 5
P5 12 13 16 9 6 4 P5 13 16 11 9 16 10
P6 13 16 12 13 3 9 P6 14 10 8 10 3 14
P7 14 11 8 12 7 18 P7 11 12 6 15 7 17
P8 10 10 3 18 11 17 P8 12 13 12 16 8 18
P9 7 8 9 14 13 5 P9 10 6 10 18 12 6
P10 9 6 13 11 1 11 P10 4 11 16 17 1 15
P11 8 9 15 15 14 P11 8 8 17 13 10 11
P12 11 12 14 16 16 1 P12 9 9 14 12 13 1
P13 5 7 6 1 14 15 P13 7 7 4 2 15 8
P14 4 4 5 10 9 12 P14 5 4 5 14 5 12
P15 6 5 10 17 2 2 P15 6 5 9 11 2 2
P16 2 3 4 6 10 13 P16 2 2 3 4 14 13
P17 1 1 2 7 4 6 P17 1 1 2 7 4 7
P18 3 2 1 3 5 16 P18 3 3 1 3 9 16
E3 P1 18 15 16 2 11 3 E4 P1 18 17 18 2 11 2
P2 17 18 12 7 18 4 P2 17 18 17 7 16 4
P3 11 14 7 1 16 9 P3 16 16 2 8 12 15
P4 14 17 17 3 15 5 P4 12 14 5 6 18 7
P5 15 13 13 8 9 11 P5 15 11 13 17 15 5
P6 13 16 5 17 4 6 P6 13 15 8 10 4 6
P7 16 11 11 11 3 18 P7 14 13 15 9 1 11
P8 6 12 9 18 6 17 P8 5 8 6 18 18
Po 4 5 10 9 8 7 P9 6 7 10 15 13 8
P10 8 10 14 12 1 13 P10 10 9 9 13 2 13
P11 9 8 18 10 12 14 P11 8 10 16 16 9 12
P12 12 9 15 16 10 1 P12 7 12 14 11 6 3
P13 10 7 6 14 17 12 P13 9 5 7 3 10 10
P14 5 3 3 13 5 15 P14 4 4 11 14 17 16
P15 7 4 4 15 2 2 P15 11 6 12 12 3 1
P16 2 2 2 5 13 10 P16 2 2 4 5 14 14
P17 1 1 1 6 7 8 P17 3 1 1 4 7 9
P18 3 6 8 4 14 16 P18 1 3 3 1 8 17
E5 P1 17 17 17 2 14 1 E5 P10 9 8 13 11 2 12
P2 18 14 18 3 17 4 P11 10 10 15 12 11 10
P3 15 15 5 4 16 11 P12 11 11 14 15 12 2
P4 16 18 12 5 15 5 P13 8 9 6 1 18 13
P5 12 13 16 17 9 6 P14 5 4 7 9 8 14
P6 13 16 4 18 3 7 P15 6 5 8 10 1 3
p7 14 12 9 13 5 16 P16 2 2 3 7 13 15
P8 4 6 10 16 7 17 P17 1 1 1 8 4 9
P9 7 7 11 14 10 8 P18 3 3 2 6 6 18
where the last inequality follows from y;r >0 forall (i,j,r) € &. Thus, we have:
Thus, for any z feasible for the perturbation problem, we have: I J R
z*
L L& Z*(”)SZ*‘ZZZ T 5ijr—Z*€,
22X = )N Ny — ANe, (A.18) i=1 == G X Py (A22)
i=1 j=1r=1 21: zJ: i e .
. . =|l—-¢e— — |z~
which yields: = ir=t=t3 Z/L=1 p;';sjl
AL Following th tri t as th f of Th 1
ee) < 2F — Z Z Z yi,}rgm — e (A.19) ollowing the symmetric argument as the proof o eorem 1, we

Let o;;, = Rufocyij,

ijr
argument as the proof of Theorem 1, we have, by Lagrange multiplier
method,

for all (i,j,r) € £. Following the symmetric

I RuROC
* _ - r | =z*
ol ZZZ . =z*, (A.20)
Py ey ey o P30 PySji
and
Ru'l‘QOCA*
y . VGneE (421

ijr T el ox.
1 2l PjiSji
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can conclude that the equality in the upper bound always holds, which
gives the results in Corollary 2. []

Appendix B. Case study data

See Table B.1.

Data availability

Data will be made available on request.
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